Swarm-Based Medicine


Paul Martin Putora and Jan Oldenburgin the Journal of Medical Internet Research: “Humans, armed with Internet technology, exercise crowd intelligence in various spheres of social interaction ranging from predicting elections to company management. Internet-based interaction may result in different outcomes, such as improved response capability and decision-making quality.
The direct comparison of swarm-based medicine with evidence- or eminence-based is interesting, but these concepts should be perceived as complementing each other and working independently of each other. Optimal decision making depends on a balance of personal knowledge and swarm intelligence, taking into account the quality of each, with their weight in decisions being adapted accordingly. The possibility of balancing controversial standpoints and achieving acceptable conclusions for the majority of participants has been an important task of scientific and medical conferences since the Age of Enlightenment in the 17th and 18th centuries. Our swarm continues with this interconnecting synchronization at an unprecedented speed and is, thanks to eVotes, Internet forums, and the like, more reactive than ever. Faster changes in our direction of movement, like a school of fish, are becoming possible. Information spreads from one individual to another. It is unconscious, but with our own dance we influence the rest of the beehive.
Within an environment, individual behavior determines the behavior of the collective and vice versa. Internet technology has dramatically changed the environment we behave in. Traditionally, medical information was provided to patients as well as to physicians by experts. This intermediation was characterized by an expert standing between sources of information and the user. Currently, and probably even more so in the future, Web 2.0 and appropriate algorithms enable users to rely on the guidance or behavior of their peers in selecting and consuming information. This is one of many processes facilitated by medicine 2.0 and is described as “apomediation”. Apomediation, whether implicit or explicit, increases the influence of individuals on others. For an individual to adapt its behavior within a swarm, other individuals need to be perceived and their actions reacted upon. Through apomediation, more individuals take part in the swarm.
Our patients are better informed; second opinions can be sought via the Internet within hours. Our individual behavior is influenced by online resources as well as digital communication with our colleagues. This change in individual behavior influences the way we find, understand, and adopt guidelines. Societies representing larger groups within the swarms use this technology to create recommendations. This process is influenced by individuals and previous actions of the community; these then in return influence individual behavior. Information technology has a major impact on the lifecycle of guidelines and recommendations. There is no entry and exit point for IT in this regard. With increasing influence on individual behavior, its influence on collective behavior increases, influencing the other direction to the same extent.
Dynamic changes in movement of the swarm and within the swarm may lead to individuals leaving the herd. These may influence the herd to move in the direction of the outliers. At the same time, an individual leaving a flock or swarm is exposed. Physicians as well as clinical centers expose themselves when they leave the group for the sake of innovation. Negative results and failure might lead to legal exposure should treatments fail.
The perception of swarm behavior itself changes the way we approach guidelines. When several guidelines are published, being aware of them as a result of interaction increases our awareness for bias. Major deviations from other recommendations warrant scrutiny. The perception of swarm behavior and embracing the knowledge of the swarm may lead to an optimized use of resources. Information that has already been obtained may be incorporated directly by agents, enabling them to build on this and establish new knowledge—as social learning agents”