Paper by Satchit Balsari, Mathew V. Kiang, and Caroline O. Buckee: “…In recent years, large-scale streams of digital data on medical needs, population vulnerabilities, physical and medical infrastructure, human mobility, and environmental conditions have become available in near-real time. Sophisticated analytic methods for combining them meaningfully are being developed and are rapidly evolving. However, the translation of these data and methods into improved disaster response faces substantial challenges. The data exist but are not readily accessible to hospitals and response agencies. The analytic pipelines to rapidly translate them into policy-relevant insights are lacking, and there is no clear designation of responsibility or mandate to integrate them into disaster-mitigation or disaster-response strategies. Building these integrated translational pipelines that use data rapidly and effectively to address the health effects of natural disasters will require substantial investments, and these investments will, in turn, rely on clear evidence of which approaches actually improve outcomes. Public health institutions face some ongoing barriers to achieving this goal, but promising solutions are available….(More)”
Data in Crisis — Rethinking Disaster Preparedness in the United States
How to contribute:
Did you come across – or create – a compelling project/report/book/app at the leading edge of innovation in governance?
Share it with us at info@thelivinglib.org so that we can add it to the Collection!
About the Curator
Get the latest news right in you inbox
Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday
Related articles
DATA
Social Data for Health
Posted in November 6, 2025 by Stefaan Verhulst
DATA
Insight-Driven Problem Solving: Analytics Science to Improve the World
Posted in November 5, 2025 by Stefaan Verhulst
artificial intelligence, DATA
The geography of AI compute: Mapping what is available and where
Posted in November 4, 2025 by Stefaan Verhulst