Article by Wim Zwijnenburg: “The sheer scale of ocean oil pollution is staggering. In Europe, a suspected 3,000 major illegal oil dumps take place annually, with an estimated release of between 15,000 and 60,000 tonnes of oil ending up in the North Sea. In the Mediterranean, figures provided by the Regional Marine Pollution Emergency Response Centre estimate there are 1,500 to 2,000 oil spills every year.
The impact of any single oil spill on a marine or coastal ecosystem can be devastating and long-lasting. Animals such as birds, turtles, dolphins and otters can suffer from ingesting or inhaling oil, as well as getting stuck in the slick. The loss of water and soil quality can be toxic to both flora and fauna. Heavy metals enter the food chain, poisoning everything from plankton to shellfish, which in turn affects the livelihoods of coastal communities dependent on fishing and tourism.
However, with a wealth of open source earth observation tools at our fingertips, during such environmental disasters it’s possible for us to identify and monitor these spills, highlight at-risk areas, and even hold perpetrators accountable. …
There are several different types of remote sensing sensors we can use for collecting data about the Earth’s surface. In this article we’ll focus on two: optical and radar sensors.
Optical imagery captures the broad light spectrum reflected from the Earth, also known as passive remote sensing. In contrast, Synthetic Aperture Radar (SAR) uses active remote sensing, sending radio waves down to the Earth’s surface and capturing them as they are reflected back. Any change in the reflection can indicate a change on ground, which can then be investigated. For more background, see Bellingcat contributor Ollie Ballinger’s Remote Sensing for OSINT Guide…(More)”.