Paper by Judith Sáinz-Pardo Díaz & Álvaro López García: “Open science is a fundamental pillar to promote scientific progress and collaboration, based on the principles of open data, open source and open access. However, the requirements for publishing and sharing open data are in many cases difficult to meet in compliance with strict data protection regulations. Consequently, researchers need to rely on proven methods that allow them to anonymize their data without sharing it with third parties. To this end, this paper presents the implementation of a Python library for the anonymization of sensitive tabular data. This framework provides users with a wide range of anonymization methods that can be applied on the given dataset, including the set of identifiers, quasi-identifiers, generalization hierarchies and allowed level of suppression, along with the sensitive attribute and the level of anonymity required. The library has been implemented following best practices for integration and continuous development, as well as the use of workflows to test code coverage based on unit and functional tests…(More)”.
How to contribute:
Did you come across – or create – a compelling project/report/book/app at the leading edge of innovation in governance?
Share it with us at info@thelivinglib.org so that we can add it to the Collection!
About the Curator
Get the latest news right in your inbox
Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday
Related articles
DATA
How Google Maps quietly allocates survival across London’s restaurants – and how I built a dashboard to see through it
Posted in January 22, 2026 by Stefaan Verhulst
artificial intelligence, DATA
Voices in Every Language: How India is Building More Inclusive AI
Posted in January 21, 2026 by Stefaan Verhulst
DATA
Reimagining how evidence drives change
Posted in January 21, 2026 by Stefaan Verhulst