How Bad Is China’s Economy? The Data Needed to Answer Is Vanishing


Article by Rebecca Feng and Jason Douglas: “Not long ago, anyone could comb through a wide range of official data from China. Then it started to disappear. 

Land sales measures, foreign investment data and unemployment indicators have gone dark in recent years. Data on cremations and a business confidence index have been cut off. Even official soy sauce production reports are gone.

In all, Chinese officials have stopped publishing hundreds of data points once used by researchers and investors, according to a Wall Street Journal analysis. 

In most cases, Chinese authorities haven’t given any reason for ending or withholding data. But the missing numbers have come as the world’s second biggest economy has stumbled under the weight of excessive debt, a crumbling real-estate market and other troubles—spurring heavy-handed efforts by authorities to control the narrative.China’s National Bureau of Statistics stopped publishing some numbers related to unemployment in urban areas in recent years. After an anonymous user on the bureau’s website asked why one of those data points had disappeared, the bureau said only that the ministry that provided it stopped sharing the data.

The disappearing data have made it harder for people to know what’s going on in China at a pivotal time, with the trade war between Washington and Beijing expected to hit China hard and weaken global growth. Plunging trade with the U.S. has already led to production shutdowns and job cuts.

Getting a true read on China’s growth has always been tricky. Many economists have long questioned the reliability of China’s headline gross domestic product data, and concerns have intensified recently. Official figures put GDP growth at 5% last year and 5.2% in 2023, but some have estimated that Beijing overstated its numbers by as much as 2 to 3 percentage points. 

To get what they consider to be more realistic assessments of China’s growth, economists have turned to alternative sources such as movie box office revenues, satellite data on the intensity of nighttime lights, the operating rates of cement factories and electricity generation by major power companies. Some parse location data from mapping services run by private companies such as Chinese tech giant Baidu to gauge business activity. 

One economist said he has been assessing the health of China’s services sector by counting news stories about owners of gyms and beauty salons who abruptly close up and skip town with users’ membership fees…(More)”.

Governing in the Age of AI: Reimagining Local Government


Report by the Tony Blair Institute for Global Change: “…The limits of the existing operating model have been reached. Starved of resources by cuts inflicted by previous governments over the past 15 years, many councils are on the verge of bankruptcy even though local taxes are at their highest level. Residents wait too long for care, too long for planning applications and too long for benefits; many people never receive what they are entitled to. Public satisfaction with local services is sliding.

Today, however, there are new tools – enabled by artificial intelligence – that would allow councils to tackle these challenges. The day-to-day tasks of local government, whether related to the delivery of public services or planning for the local area, can all be performed faster, better and cheaper with the use of AI – a true transformation not unlike the one seen a century ago.

These tools would allow councils to overturn an operating model that is bureaucratic, labour-intensive and unresponsive to need. AI could release staff from repetitive tasks and relieve an overburdened and demotivated workforce. It could help citizens navigate the labyrinth of institutions, webpages and forms with greater ease and convenience. It could support councils to make better long-term decisions to drive economic growth, without which the resource pressure will only continue to build…(More)”.

Nonprofit AI: A Comprehensive Guide to Implementing Artificial Intelligence for Social Good


Book by Nathan Chappell and Scott Rosenkrans: “…an insightful and practical overview of how purpose-driven organizations can use AI to increase their impact and advance their missions. The authors offer an all-encompassing guide to understanding the promise and peril of implementing AI in the nonprofit sector, addressing both the theoretical and hands-on aspects of this necessary transformation.

The book provides you with case studies, practical tools, ethical frameworks and templates you can use to address the challenges of AI adoption – including ethical limitations – head-on. It draws on the authors’ thirty years of combined experience in the nonprofit industry to help you equip your nonprofit stakeholders with the knowledge and tools they need to successfully navigate the AI revolution.

You’ll also find:

  • Innovative and proven approaches to responsible and beneficial AI implementation taken by real-world organizations that will inspire and guide you as you move forward
  • Strategic planning, project management, and data governance templates and resources you can use immediately in your own nonprofit
  • Information on available AI training programs and resources to build AI fluency and capacity within nonprofit organizations.
  • Best practices for ensuring AI systems are transparent, accountable, and aligned with the mission and values of nonprofit organizations…(More)”.

Co-Designing AI Systems with Value-Sensitive Citizen Science


Paper by Sachit Mahajan and Dirk Helbing: “As artificial intelligence (AI) systems increasingly shape everyday life, integrating diverse community values into their development becomes both an ethical imperative and a practical necessity. This paper introduces Value Sensitive Citizen Science (VSCS), a systematic framework combining Value Sensitive Design (VSD) principles with citizen science methods to foster meaningful public participation in AI. Addressing critical gaps in existing approaches, VSCS integrates culturally grounded participatory methods and structured cognitive scaffolding through the Participatory Value-Cognition Taxonomy (PVCT). Through iterative value-sensitive participation cycles guided by an extended scenario logic (What-if, If-then, Then-what, What-now), community members act as genuine coresearchers-identifying, translating, and operationalizing local values into concrete technical requirements. The framework also institutionalizes governance structures for ongoing oversight, adaptability, and accountability across the AI lifecycle. By explicitly bridging participatory design with algorithmic accountability, VSCS ensures that AI systems reflect evolving community priorities rather than reinforcing top-down or monocultural perspectives. Critical discussions highlight VSCS’s practical implications, addressing challenges such as power dynamics, scalability, and epistemic justice. The paper concludes by outlining actionable strategies for policymakers and practitioners, alongside future research directions aimed at advancing participatory, value-driven AI development across diverse technical and sociocultural contexts…(More)”.


The Dangers of AI Nationalism and Beggar-Thy-Neighbour Policies


Paper by Susan Aaronson: “As they attempt to nurture and govern AI, some nations are acting in ways that – with or without direct intent – discriminate among foreign market actors. For example, some governments are excluding foreign firms from access to incentives for high-speed computing, or requiring local content in the AI supply chain, or adopting export controls for the advanced chips that power many types of AI. If policy makers in country X can limit access to the building blocks of AI – whether funds, data or high-speed computing power – it might slow down or limit the AI prowess of its competitors in country Y and/or Z. At the same time, however, such policies could violate international trade norms of non-discrimination. Moreover, if policy makers can shape regulations in ways that benefit local AI competitors, they may also impede the competitiveness of other nations’ AI developers. Such regulatory policies could be discriminatory and breach international trade rules as well as long-standing rules about how nations and firms compete – which, over time, could reduce trust among nations. In this article, the author attempts to illuminate AI nationalism and its consequences by answering four questions:

– What are nations doing to nurture AI capacity within their borders?

Are some of these actions trade distorting?

 – Are some nations adopting twenty-first century beggar thy neighbour policies?

– What are the implications of such trade-distorting actions?

The author finds that AI nationalist policies appear to help countries with the largest and most established technology firms across multiple levels of the AI value chain. Hence, policy makers’ efforts to dominate these sectors, as example through large investment sums or beggar thy neighbour policies are not a good way to build trust…(More)”.

Balancing Data Sharing and Privacy to Enhance Integrity and Trust in Government Programs


Paper by National Academy of Public Administration: “Improper payments and fraud cost the federal government hundreds of billions of dollars each year, wasting taxpayer money and eroding public trust. At the same time, agencies are increasingly expected to do more with less. Finding better ways to share data, without compromising privacy, is critical for ensuring program integrity in a resource-constrained environment.

Key Takeaways

  • Data sharing strengthens program integrity and fraud prevention. Agencies and oversight bodies like GAO and OIGs have uncovered large-scale fraud by using shared data.
  • Opportunities exist to streamline and expedite the compliance processes required by privacy laws and reduce systemic barriers to sharing data across federal agencies.
  • Targeted reforms can address these barriers while protecting privacy:
    1. OMB could issue guidance to authorize fraud prevention as a routine use in System of Records Notices.
    2. Congress could enact special authorities or exemptions for data sharing that supports program integrity and fraud prevention.
    3. A centralized data platform could help to drive cultural change and support secure, responsible data sharing…(More)”

Glorious RAGs : A Safer Path to Using AI in the Social Sector


Blog by Jim Fruchterman: “Social sector leaders ask me all the time for advice on using AI. As someone who started for-profit machine learning (AI) companies in the 1980s, but then pivoted to running nonprofit social enterprises, I’m often the first person from Silicon Valley that many nonprofit leaders have met. I joke that my role is often that of “anti-consultant,” talking leaders out of doing an app, a blockchain (smile) or firing half their staff because of AI. Recently, much of my role has been tamping down the excessive expectations being bandied about for the impact of AI on organizations. However, two years into the latest AI fad wave created by ChatGPT and its LLM (large language model) peers, more and more of the leaders are describing eminently sensible applications of LLMs to their programs. The most frequent of these approaches can be described as variations on “Retrieval-Augmented Generation,” also known as RAG. I am quite enthusiastic about using RAG for social impact, because it addresses a real need and supplies guardrails for using LLMs effectively…(More)”

AI Agents in Global Governance: Digital Representation for Unheard Voices


Book by Eduardo Albrecht: “Governments now routinely use AI-based software to gather information about citizens and determine the level of privacy a person can enjoy, how far they can travel, what public benefits they may receive, and what they can and cannot say publicly. What input do citizens have in how these machines think?

In Political Automation, Eduardo Albrecht explores this question in various domains, including policing, national security, and international peacekeeping. Drawing upon interviews with rights activists, Albrecht examines popular attempts to interact with this novel form of algorithmic governance so far. He then proposes the idea of a Third House, a virtual chamber that legislates exclusively on AI in government decision-making and is based on principles of direct democracy, unlike existing upper and lower houses that are representative. Digital citizens, AI powered replicas of ourselves, would act as our personal emissaries to this Third House. An in-depth look at how political automation impacts the lives of citizens, this book addresses the challenges at the heart of automation in public policy decision-making and offers a way forward…(More)”.

A matter of choice: People and possibilities in the age of AI


UNDP Human Development Report 2025: “Artificial intelligence (AI) has broken into a dizzying gallop. While AI feats grab headlines, they privilege technology in a make-believe vacuum, obscuring what really matters: people’s choices.

The choices that people have and can realize, within ever expanding freedoms, are essential to human development, whose goal is for people to live lives they value and have reason to value. A world with AI is flush with choices the exercise of which is both a matter of human development and a means to advance it.

Going forward, development depends less on what AI can do—not on how human-like it is perceived to be—and more on mobilizing people’s imaginations to reshape economies and societies to make the most of it. Instead of trying vainly to predict what will happen, this year’s Human Development Report asks what choices can be made so that new development pathways for all countries dot the horizon, helping everyone have a shot at thriving in a world with AI…(More)”.

Charting the AI for Good Landscape – A New Look


Article by Perry Hewitt and Jake Porway: “More than 50% of nonprofits report that their organization uses generative AI in day-to-day operations. We’ve also seen an explosion of AI tools and investments. 10% of all the AI companies that exist in the US were founded in 2022, and that number has likely grown in subsequent years.  With investors funneling over $300B into AI and machine learning startups, it’s unlikely this trend will reverse any time soon.

Not surprisingly, the conversation about Artificial Intelligence (AI) is now everywhere, spanning from commercial uses such as virtual assistants and consumer AI to public goods, like AI-driven drug discovery and chatbots for education. The dizzying amount of new AI programs and initiatives – over 5000 new tools listed in 2023 on AI directories like TheresAnAI alone – can make the AI landscape challenging to navigate in general, much less for social impact. Luckily, four years ago, we surveyed the Data and AI for Good landscape and mapped out distinct families of initiatives based on their core goals. Today, we are revisiting that landscape to help folks get a handle on the AI for Good landscape today and to reflect on how the field has expanded, diversified, and matured…(More)”.