Paper by Kathryne Metcalf and Jathan Sadowski : “Recent reporting has revealed that the UK Biobank (UKB)—a large, publicly-funded research database containing highly-sensitive health records of over half a million participants—has shared its data with private insurance companies seeking to develop actuarial AI systems for analyzing risk and predicting health. While news reports have characterized this as a significant breach of public trust, the UKB contends that insurance research is “in the public interest,” and that all research participants are adequately protected from the possibility of insurance discrimination via data de-identification. Here, we contest both of these claims. Insurers use population data to identify novel categories of risk, which become fodder in the production of black-boxed actuarial algorithms. The deployment of these algorithms, as we argue, has the potential to increase inequality in health and decrease access to insurance. Importantly, these types of harms are not limited just to UKB participants: instead, they are likely to proliferate unevenly across various populations within global insurance markets via practices of profiling and sorting based on the synthesis of multiple data sources, alongside advances in data analysis capabilities, over space/time. This necessitates a significantly expanded understanding of the publics who must be involved in biobank governance and data-sharing decisions involving insurers…(More)”.
Data’s Role in Unlocking Scientific Potential
Report by the Special Competitive Studies Project: “…we outline two actionable steps the U.S. government can take immediately to address the data sharing challenges hindering scientific research.
1. Create Comprehensive Data Inventories Across Scientific Domains
We recommend the Secretary of Commerce, acting through the Department of Commerce’s Chief Data Officer and the Director of the National Institute of Standards and Technology (NIST), and with the Federal Chief Data Officer Council (CDO Council) create a government-led inventory where organizations – universities, industries, and research institutes – can catalog their datasets with key details like purpose, description, and accreditation. Similar to platforms like data.gov, this centralized repository would make high-quality data more visible and accessible, promoting scientific collaboration. To boost participation, the government could offer incentives, such as grants or citation credits for researchers whose data is used. Contributing organizations would also be responsible for regularly updating their entries, ensuring the data stays relevant and searchable.
2. Create Scientific Data Sharing Public-Private Partnerships
A critical recommendation of the National Data Action Plan was for the United States to facilitate the creation of data sharing public-private partnerships for specific sectors. The U.S. Government should coordinate data sharing partnerships with its departments and agencies, industry, academia, and civil society. Data collected by one entity can be tremendously valuable to others. But incentivizing data sharing is challenging as privacy, security, legal (e.g., liability), and intellectual property (IP) concerns can limit willingness to share. However, narrowly-scoped PPPs can help overcome these barriers, allowing for greater data sharing and mutually beneficial data use…(More)”
Can LLMs advance democratic values?
Paper by Seth Lazar and Lorenzo Manuali: “LLMs are among the most advanced tools ever devised for analysing and generating linguistic content. Democratic deliberation and decision-making involve, at several distinct stages, the production and analysis of language. So it is natural to ask whether our best tools for manipulating language might prove instrumental to one of our most important linguistic tasks. Researchers and practitioners have recently asked whether LLMs can support democratic deliberation by leveraging abilities to summarise content, as well as to aggregate opinion over summarised content, and indeed to represent voters by predicting their preferences over unseen choices. In this paper, we assess whether using LLMs to perform these and related functions really advances the democratic values that inspire these experiments. We suggest that the record is decidedly mixed. In the presence of background inequality of power and resources, as well as deep moral and political disagreement, we should be careful not to use LLMs in ways that automate non-instrumentally valuable components of the democratic process, or else threaten to supplant fair and transparent decision-making procedures that are necessary to reconcile competing interests and values. However, while we argue that LLMs should be kept well clear of formal democratic decision-making processes, we think that they can be put to good use in strengthening the informal public sphere: the arena that mediates between democratic governments and the polities that they serve, in which political communities seek information, form civic publics, and hold their leaders to account…(More)”.
AI-accelerated Nazca survey nearly doubles the number of known figurative geoglyphs and sheds light on their purpose
Paper by Masato Sakai, Akihisa Sakurai, Siyuan Lu, and Marcus Freitag: “It took nearly a century to discover a total of 430 figurative Nazca geoglyphs, which offer significant insights into the ancient cultures at the Nazca Pampa. Here, we report the deployment of an AI system to the entire Nazca region, a UNESCO World Heritage site, leading to the discovery of 303 new figurative geoglyphs within only 6 mo of field survey, nearly doubling the number of known figurative geoglyphs. Even with limited training examples, the developed AI approach is demonstrated to be effective in detecting the smaller relief-type geoglyphs, which unlike the giant line-type geoglyphs are very difficult to discern. The improved account of figurative geoglyphs enables us to analyze their motifs and distribution across the Nazca Pampa. We find that relief-type geoglyphs depict mainly human motifs or motifs of things modified by humans, such as domesticated animals and decapitated heads (81.6%). They are typically located within viewing distance (on average 43 m) of ancient trails that crisscross the Nazca Pampa and were most likely built and viewed at the individual or small-group level. On the other hand, the giant line-type figurative geoglyphs mainly depict wild animals (64%). They are found an average of 34 m from the elaborate linear/trapezoidal network of geoglyphs, which suggests that they were probably built and used on a community level for ritual activities…(More)”
The Age of AI Nationalism and Its Effects
Paper by Susan Ariel Aaronson: “Policy makers in many countries are determined to develop artificial intelligence (AI) within their borders because they view AI as essential to both national security and economic growth. Some countries have proposed adopting AI sovereignty, where the nation develops AI for its people, by its people and within its borders. In this paper, the author makes a distinction between policies designed to advance domestic AI and policies that, with or without direct intent, hamper the production or trade of foreign-produced AI (known as “AI nationalism”). AI nationalist policies in one country can make it harder for firms in another country to develop AI. If officials can limit access to key components of the AI supply chain, such as data, capital, expertise or computing power, they may be able to limit the AI prowess of competitors in country Y and/or Z. Moreover, if policy makers can shape regulations in ways that benefit local AI competitors, they may also impede the competitiveness of other nations’ AI developers. AI nationalism may seem appropriate given the import of AI, but this paper aims to illuminate how AI nationalistic policies may backfire and could divide the world into AI haves and have nots…(More)”.
Social Systems Evidence
About: “…a continuously updated repository of syntheses of research evidence about the programs, services and products available in a broad range of government sectors and program areas (e.g., climate action, community and social services, economic development and growth, education, environmental conservation, education, housing and transportation) as well as the governance, financial and delivery arrangements within which these programs, services and products are provided, and the implementation strategies that can help to ensure that these programs, services and products get to those who need them.
The content covers the Sustainable Development Goals, with the exceptions of the health part of goal 3 (which is already well covered by existing databases).
The types of syntheses include evidence briefs for policy, overviews of evidence syntheses, evidence syntheses addressing questions about effectiveness, evidence syntheses addressing other types of questions, evidence syntheses in progress (i.e., protocols for evidence syntheses), and evidence syntheses being planned (i.e., registered titles for evidence syntheses). Social Systems Evidence also contains a continuously updated repository of economic evaluations in these same domains…(More)”
We are Developing AI at the Detriment of the Global South — How a Focus on Responsible Data Re-use Can Make a Difference
Article by Stefaan Verhulst and Peter Addo: “…At the root of this debate runs a frequent concern with how data is collected, stored, used — and responsibly reused for other purposes that initially collected for…
In this article, we propose that promoting responsible reuse of data requires addressing the power imbalances inherent in the data ecology. These imbalances disempower key stakeholders, thereby undermining trust in data management practices. As we recently argued in a report on “responsible data reuse in developing countries,” prepared for Agence Française de Development (AFD), power imbalences may be particularly pernicious when considering the use of data in the Global South. Addressing these requires broadening notions of consent, beyond current highly individualized approaches, in favor of what we instead term a social license for reuse.
In what follows, we explain what a social license means, and propose three steps to help achieve that goal. We conclude by calling for a new research agenda — one that would stretch existing disciplinary and conceptual boundaries — to reimagine what social licenses might mean, and how they could be operationalized…(More)”.
Artificial Intelligence for Social Innovation: Beyond the Noise of Algorithms and Datafication
Paper by Igor Calzada: “In an era of rapid technological advancement, decisions about the ownership and governance of emerging technologies like Artificial Intelligence will shape the future of both urban and rural environments in the Global North and South. This article explores how AI can move beyond the noise of algorithms by adopting a technological humanistic approach to enable Social Innovation, focusing on global inequalities and digital justice. Using a fieldwork Action Research methodology, based on the Smart Rural Communities project in Colombia and Mozambique, the study develops a framework for integrating AI with SI. Drawing on insights from the AI4SI International Summer School held in Donostia-San Sebastián in 2024, the article examines the role of decentralized Web3 technologies—such as Blockchain, Decentralized Autonomous Organizations, and Data Cooperatives—in enhancing data sovereignty and fostering inclusive and participatory governance. The results demonstrate how decentralization can empower marginalized communities in the Global South by promoting digital justice and addressing the imbalance of power in digital ecosystems. The conclusion emphasizes the potential for AI and decentralized technologies to bridge the digital divide, offering practical recommendations for scaling these innovations to support equitable, community-driven governance and address systemic inequalities across the Global North and South…(More)”.
The ABC’s of Who Benefits from Working with AI: Ability, Beliefs, and Calibration
Paper by Andrew Caplin: “We use a controlled experiment to show that ability and belief calibration jointly determine the benefits of working with Artificial Intelligence (AI). AI improves performance more for people with low baseline ability. However, holding ability constant, AI assistance is more valuable for people who are calibrated, meaning they have accurate beliefs about their own ability. People who know they have low ability gain the most from working with AI. In a counterfactual analysis, we show that eliminating miscalibration would cause AI to reduce performance inequality nearly twice as much as it already does…(More)”.
How Generative AI Content Could Influence the U.S. Election
Article by Valerie Wirtschafter: “…The contested nature of the presidential race means such efforts will undoubtedly continue, but they likely will remain discoverable, and their reach and ability to shape election outcomes will be minimal. Instead, the most meaningful uses of generative AI content could occur in highly targeted scenarios just prior to the election and/or in a contentious post-election environment where experience has demonstrated that potential “evidence” of malfeasance need not be true to mobilize a small subset of believers to act.
Because U.S. elections are managed at the state and county levels, low-level actors in some swing precincts or counties are catapulted to the national spotlight every four years. Since these actors are not well known to the public, targeted and personal AI-generated content can cause significant harm. Before the election, this type of fabricated content could take the form of a last-minute phone call by someone claiming to be election worker alerting voters to an issue at their polling place.
After the election, it could become harassment of election officials or “evidence” of foul play. Due to the localized and personalized nature of this type of effort, it could be less rapidly discoverable for unknown figures not regularly in the public eye, difficult to debunk or prevent with existing tools and guardrails, and damaging to reputations. This tailored approach need not be driven by domestic actors—in fact, in the lead up to the 2020 elections, Iranian actors pretended to be members of the Proud Boys and sent threatening emails to Democratic voters in select states demanding they vote for Donald Trump. Although election officials have worked tirelessly to brace for this possibility, they are correct to be on guard…(More)”