On conspiracy theories of ignorance


Essay by In “On the Sources of Knowledge and Ignorance”, Karl Popper identifies a kind of “epistemological optimism”—an optimism about “man’s power to discern truth and to acquire knowledge”—that has played a significant role in the history of philosophy. At the heart of this optimistic view, Popper argues, is the “doctrine that truth is manifest”:

“Truth may perhaps be veiled, and removing the veil may not be easy. But once the naked truth stands revealed before our eyes, we have the power to see it, to distinguish it from falsehood, and to know that it is truth.”

According to Popper, this doctrine inspired the birth of modern science, technology, and liberalism. If the truth is manifest, there is “no need for any man to appeal to authority in matters of truth because each man carried the sources of knowledge in himself”:

“Man can know: thus he can be free. This is the formula which explains the link between epistemological optimism and the ideas of liberalism.”

Although a liberal himself, Popper argues that the doctrine of manifest truth is false. “The simple truth,” he writes, “is that truth is often hard to come by, and that once found it may easily be lost again.” Moreover, he argues that the doctrine is pernicious. If we think the truth is manifest, we create “the need to explain falsehood”:

“Knowledge, the possession of truth, need not be explained. But how can we ever fall into error if truth is manifest? The answer is: through our own sinful refusal to see the manifest truth; or because our minds harbour prejudices inculcated by education and tradition, or other evil influences which have perverted our originally pure and innocent minds.”

In this way, the doctrine of manifest truth inevitably gives rise to “the conspiracy theory of ignorance”…

In previous work, I have criticised how the concept of “misinformation” is applied by researchers and policy-makers. Roughly, I think that narrow applications of the term (e.g., defined in terms of fake news) are legitimate but focus on content that is relatively rare and largely symptomatic of other problems, at least in Western democracies. In contrast, broad definitions inevitably get applied in biased and subjective ways, transforming misinformation research and policy-making into “partisan combat by another name”…(More)”

Using human mobility data to quantify experienced urban inequalities


Paper by Fengli Xu et al: “The lived experience of urban life is shaped by personal mobility through dynamic relationships and resources, marked not only by access and opportunity, but also inequality and segregation. The recent availability of fine-grained mobility data and context attributes ranging from venue type to demographic mixture offer researchers a deeper understanding of experienced inequalities at scale, and pose many new questions. Here we review emerging uses of urban mobility behaviour data, and propose an analytic framework to represent mobility patterns as a temporal bipartite network between people and places. As this network reconfigures over time, analysts can track experienced inequality along three critical dimensions: social mixing with others from specific demographic backgrounds, access to different types of facilities, and spontaneous adaptation to unexpected events, such as epidemics, conflicts or disasters. This framework traces the dynamic, lived experiences of urban inequality and complements prior work on static inequalities experience at home and work…(More)”.

Why these scientists devote time to editing and updating Wikipedia


Article by Christine Ro: “…A 2018 survey of more than 4,000 Wikipedians (as the site’s editors are called) found that 12% had a doctorate. Scientists made up one-third of the Wikimedia Foundation’s 16 trustees, according to Doronina.

Although Wikipedia is the best-known project under the Wikimedia umbrella, there are other ways for scientists to contribute besides editing Wikipedia pages. For example, an entomologist could upload photos of little-known insect species to Wikimedia Commons, a collection of images and other media. A computer scientist could add a self-published book to the digital textbook site Wikibooks. Or a linguist could explain etymology on the collaborative dictionary Wiktionary. All of these are open access, a key part of Wikimedia’s mission.

Although Wikipedia’s structure might seem daunting for new editors, there are parallels with academic documents.

For instance, Jess Wade, a physicist at Imperial College London, who focuses on creating and improving biographies of female scientists and scientists from low- and middle-income countries, says that the talk page, which is the behind-the-scenes portion of a Wikipedia page on which editors discuss how to improve it, is almost like the peer-review file of an academic paper…However, scientists have their own biases about aspects such as how to classify certain topics. This matters, Harrison says, because “Wikipedia is intended to be a general-purpose encyclopaedia instead of a scientific encyclopaedia.”

One example is a long-standing battle over Wikipedia pages on cryptids and folklore creatures such as Bigfoot. Labels such as ‘pseudoscience’ have angered cryptid enthusiasts and raised questions about different types of knowledge. One suggestion is for the pages to feature a disclaimer that says that a topic is not accepted by mainstream science.

Wade raises a point about resourcing, saying it’s especially difficult for the platform to retain academics who might be enthusiastic about editing Wikipedia initially, but then drop off. One reason is time. For full-time researchers, Wikipedia editing could be an activity best left to evenings, weekends and holidays…(More)”.

Conflicts over access to Americans’ personal data emerging across federal government


Article by Caitlin Andrews: “The Trump administration’s fast-moving efforts to limit the size of the U.S. federal bureaucracy, primarily through the recently minted Department of Government Efficiency, are raising privacy and data security concerns among current and former officials across the government, particularly as the administration scales back positions charged with privacy oversight. Efforts to limit the independence of a host of federal agencies through a new executive order — including the independence of the Federal Trade Commission and Securities and Exchange Commission — are also ringing alarm bells among civil society and some legal experts.

According to CNN, several staff within the Office of Personnel Management’s privacy and records keeping department were fired last week. Staff who handle communications and respond to Freedom of Information Act requests were also let go. Though the entire privacy team was not fired, according to the OPM, details about what kind of oversight will remain within the department were limited. The report also states the staff’s termination date is 15 April.

It is one of several moves the Trump administration has made in recent days reshaping how entities access and provide oversight to government agencies’ information.

The New York Times reports on a wide range of incidents within the government where DOGE’s efforts to limit fraudulent government spending by accessing sensitive agency databases have run up against staffers who are concerned about the privacy of Americans’ personal information. In one incident, Social Security Administration acting Commissioner Michelle King was fired after resisting a request from DOGE to access the agency’s database. “The episode at the Social Security Administration … has played out repeatedly across the federal government,” the Times reported…(More)”.

Regulatory Markets: The Future of AI Governance


Paper by Gillian K. Hadfield, and Jack Clark: “Appropriately regulating artificial intelligence is an increasingly urgent policy challenge. Legislatures and regulators lack the specialized knowledge required to best translate public demands into legal requirements. Overreliance on industry self-regulation fails to hold producers and users of AI systems accountable to democratic demands. Regulatory markets, in which governments require the targets of regulation to purchase regulatory services from a private regulator, are proposed. This approach to AI regulation could overcome the limitations of both command-and-control regulation and self-regulation. Regulatory market could enable governments to establish policy priorities for the regulation of AI, whilst relying on market forces and industry R&D efforts to pioneer the methods of regulation that best achieve policymakers’ stated objectives…(More)”.

Tab the lab: A typology of public sector innovation labs


Paper by Aline Stoll and Kevin C Andermatt: “Many public sector organizations set up innovation laboratories in response to the pressure to tackle societal problems and the high expectations placed on them to innovate public services. Our understanding of the public sector innovation laboratories’ role in enhancing the innovation capacity of administrations is still limited. It is challenging to assess or compare the impact of innovation laboratories because of how they operate and what they do. This paper closes this research gap by offering a typology that organizes the diverse nature of innovation labs and makes it possible to compare various lab settings. The proposed typology gives possible relevant factors to increase the innovation capacity of public organizations. The findings are based on a literature review of primarily explorative papers and case studies, which made it possible to identify the relevant criteria. The proposed typology covers three dimensions: (1) value (intended innovation impact of the labs); (2) governance (role of government and financing model); and (3) network (stakeholders in the collaborative arrangements). Comparing European countries and regions with regards to the repartition of labs shows that Nordic and British countries tend to have broader scope than continental European countries…(More)”.

On Privacy and Technology


Book by Daniel J. Solove: “With the rapid rise of new digital technologies and artificial intelligence, is privacy dead? Can anything be done to save us from a dystopian world without privacy?

In this short and accessible book, internationally renowned privacy expert Daniel J. Solove draws from a range of fields, from law to philosophy to the humanities, to illustrate the profound changes technology is wreaking upon our privacy, why they matter, and what can be done about them. Solove provides incisive examinations of key concepts in the digital sphere, including control, manipulation, harm, automation, reputation, consent, prediction, inference, and many others.

Compelling and passionate, On Privacy and Technology teems with powerful insights that will transform the way you think about privacy and technology…(More)”.

Social Informatics


Book edited by Noriko Hara, and Pnina Fichman: “Social informatics examines how society is influenced by digital technologies and how digital technologies are shaped by political, economic, and socio-cultural forces. The chapters in this edited volume use social informatics approaches to analyze recent issues in our increasingly data-intensive society.

Taking a social informatics perspective, this edited volume investigates the interaction between society and digital technologies and includes research that examines individuals, groups, organizations, and nations, as well as their complex relationships with pervasive mobile and wearable devices, social media platforms, artificial intelligence, and big data. This volume’s contributors range from seasoned and renowned researchers to upcoming researchers in social informatics. The readers of the book will understand theoretical frameworks of social informatics; gain insights into recent empirical studies of social informatics in specific areas such as big data and its effects on privacy, ethical issues related to digital technologies, and the implications of digital technologies for daily practices; and learn how the social informatics perspective informs research and practice…(More)”.

The Cambridge Handbook of the Law, Ethics and Policy of Artificial Intelligence


Handbook edited by Nathalie A. Smuha: “…provides a comprehensive overview of the legal, ethical, and policy implications of AI and algorithmic systems. As these technologies continue to impact various aspects of our lives, it is crucial to understand and assess the challenges and opportunities they present. Drawing on contributions from experts in various disciplines, the book covers theoretical insights and practical examples of how AI systems are used in society today. It also explores the legal and policy instruments governing AI, with a focus on Europe. The interdisciplinary approach of this book makes it an invaluable resource for anyone seeking to gain a deeper understanding of AI’s impact on society and how it should be regulated…(More)”.

Handbook on Governance and Data Science


Handbook edited by Sarah Giest, Bram Klievink, Alex Ingrams, and Matthew M. Young: “This book is based on the idea that there are quite a few overlaps and connections between the field of governance studies and data science. Data science, with its focus on extracting insights from large datasets through sophisticated algorithms and analytics (Provost and Fawcett 2013), provides government with tools to potentially make more informed decisions, enhance service delivery, and foster transparency and accountability. Governance studies, concerned with the processes and structures through which public policy and services are formulated and delivered (Osborne 2006), increasingly rely on data-driven insights to address complex societal challenges, optimize resource allocation, and engage citizens more effectively (Meijer and Bolívar 2016). However, research insights in journals or at conferences remain quite separate, and thus there are limited spaces for having interconnected conversations. In addition, unprecedented societal challenges demand not only innovative solutions but new approaches to problem-solving.

In this context, data science techniques emerge as a crucial element in crafting a modern governance paradigm, offering predictive insights, revealing hidden patterns, and enabling real-time monitoring of public sentiment and service effectiveness, which are invaluable for public administrators (Kitchin 2014). However, the integration of data science into public governance also raises important considerations regarding data privacy, ethical use of data, and the need for transparency in algorithmic decision-making processes (Zuiderwijk and Janssen 2014). In short, this book is a space where governance and data science studies intersect and highlight relevant opportunities and challenges in this space at the intersection of both fields. Contributors to this book discuss the types of data science techniques applied in a governance context and the implications these have for government decisions and services. This also includes questions around the types of data that are used in government and how certain processes and challenges are measured…(More)”.