Paper by Ruizhi Liao et al in: “As the number of vehicles continues to grow, parking spaces are at a premium in city streets. Additionally, due to the lack of knowledge about street parking spaces, heuristic circling the blocks not only costs drivers’ time and fuel, but also increases city congestion. In the wake of recent trend to build convenient, green and energy-efficient smart cities, we rethink common techniques adopted by high-profile smart parking systems, and present a user-engaged (crowdsourcing) and sonar-based prototype to identify urban on-street parking spaces. The prototype includes an ultrasonic sensor, a GPS receiver and associated Arduino micro-controllers. It is mounted on the passenger side of a car to measure the distance from the vehicle to the nearest roadside obstacle. Multiple road tests are conducted around Wheatley, Oxford to gather results and emulate the crowdsourcing approach. By extracting parked vehicles’ features from the collected trace, a supervised learning algorithm is developed to estimate roadside parking occupancy and spot illegal parking vehicles. A quantity estimation model is derived to calculate the required number of sensing units to cover urban streets. The estimation is quantitatively compared to a fixed sensing solution. The results show that the crowdsourcing way would need substantially fewer sensors compared to the fixed sensing system…(More)”
How to contribute:
Did you come across – or create – a compelling project/report/book/app at the leading edge of innovation in governance?
Share it with us at info@thelivinglib.org so that we can add it to the Collection!
About the Curator
Get the latest news right in you inbox
Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday
Related articles
DATA
A Global Relaunch of RD4C.org to Better Advance Responsible Data for Every Child, Everywhere
Posted in July 17, 2025 by Stefaan Verhulst
INSTITUTIONAL INNOVATION
Augmented foresight
Posted in July 17, 2025 by Stefaan Verhulst
artificial intelligence
A foundation model to predict and capture human cognition
Posted in July 17, 2025 by Stefaan Verhulst