Paper by Jeanine Miklós-Thal, Avi Goldfarb, Avery M. Haviv & Catherine Tucker: “When a user shares multi-dimensional data about themselves with a firm, the firm learns about the correlations of different dimensions of user data. We incorporate this type of learning into a model of a data market in which a firm acquires data from users with privacy concerns. User data is multi-dimensional, and each user can share no data, only non-sensitive data, or their full data with the firm. As the firm collects more data and becomes better at drawing inferences about a user’s privacy-sensitive data from their non-sensitive data, the share of new users who share no data (“digital hermits”) grows. At the same time, the share of new users who share their full data also grows. The model therefore predicts a polarization of users’ data sharing choices away from non-sensitive data sharing to no sharing and full sharing….(More)”
How to contribute:
Did you come across – or create – a compelling project/report/book/app at the leading edge of innovation in governance?
Share it with us at info@thelivinglib.org so that we can add it to the Collection!
About the Curator
Get the latest news right in you inbox
Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday
Related articles
DATA, privacy
Data Privacy, Data Property, and Data Sharing
Posted in December 17, 2025 by Stefaan Verhulst
DATA, privacy
Digital Identity Wallets
Posted in December 17, 2025 by Stefaan Verhulst
DATA
Whose data is it, anyway? Deliberating data ownership during corporate restructuring
Posted in December 15, 2025 by Stefaan Verhulst