Fighting poverty with synthetic data


Article by Jack Gisby, Anna Kiknadze, Thomas Mitterling, and Isabell Roitner-Fransecky: “If you have ever used a smartwatch or other wearable tech to track your steps, heart rate, or sleep, you are part of the “quantified self” movement. You are voluntarily submitting millions of intimate data points for collection and analysis. The Economist highlighted the benefits of good quality personal health and wellness data—increased physical activity, more efficient healthcare, and constant monitoring of chronic conditions. However, not everyone is enthusiastic about this trend. Many fear corporations will use the data to discriminate against the poor and vulnerable. For example, insurance firms could exclude patients based on preconditions obtained from personal data sharing.

Can we strike a balance between protecting the privacy of individuals and gathering valuable information? This blog explores applying a synthetic populations approach in New York City,  a city with an established reputation for using big data approaches to support urban management, including for welfare provisions and targeted policy interventions.

To better understand poverty rates at the census tract level, World Data Lab, with the support of the Sloan Foundation, generated a synthetic population based on the borough of Brooklyn. Synthetic populations rely on a combination of microdata and summary statistics:

  • Microdata consists of personal information at the individual level. In the U.S., such data is available at the Public Use Microdata Area (PUMA) level. PUMA are geographic areas partitioning the state, containing no fewer than 100,000 people each. However, due to privacy concerns, microdata is unavailable at the more granular census tract level. Microdata consists of both household and individual-level information, including last year’s household income, the household size, the number of rooms, and the age, sex, and educational attainment of each individual living in the household.
  • Summary statistics are based on populations rather than individuals and are available at the census tract level, given that there are fewer privacy concerns. Census tracts are small statistical subdivisions of a county, averaging about 4,000 inhabitants. In New York City, a census tract roughly equals a building block. Similar to microdata, summary statistics are available for individuals and households. On the census tract level, we know the total population, the corresponding demographic breakdown, the number of households within different income brackets, the number of households by number of rooms, and other similar variables…(More)”.