Learning Privacy Expectations by Crowdsourcing Contextual Informational Norms


 at Freedom to Tinker: “The advent of social apps, smart phones and ubiquitous computing has brought a great transformation to our day-to-day life. The incredible pace with which the new and disruptive services continue to emerge challenges our perception of privacy. To keep apace with this rapidly evolving cyber reality, we need to devise agile methods and frameworks for developing privacy-preserving systems that align with evolving user’s privacy expectations.

Previous efforts have tackled this with the assumption that privacy norms are provided through existing sources such law, privacy regulations and legal precedents. They have focused on formally expressing privacy norms and devising a corresponding logic to enable automatic inconsistency checks and efficient enforcement of the logic.

However, because many of the existing regulations and privacy handbooks were enacted well before the Internet revolution took place, they often lag behind and do not adequately reflect the application of logic in modern systems. For example, the Family Rights and Privacy Act (FERPA) was enacted in 1974, long before Facebook, Google and many other online applications were used in an educational context. More recent legislation faces similar challenges as novel services introduce new ways to exchange information, and consequently shape new, unconsidered information flows that can change our collective perception of privacy.

Crowdsourcing Contextual Privacy Norms

Armed with the theory of Contextual Integrity (CI) in our work, we are exploring ways to uncover societal norms by leveraging the advances in crowdsourcing technology.

In our recent paper, we present the methodology that we believe can be used to extract a societal notion of privacy expectations. The results can be used to fine tune the existing privacy guidelines as well as get a better perspective on the users’ expectations of privacy.

CI defines privacy as collection of norms (privacy rules) that reflect appropriate information flows between different actors. Norms capture who shares what, with whom, in what role, and under which conditions. For example, while you are comfortable sharing your medical information with your doctor, you might be less inclined to do so with your colleagues.

We use CI as a proxy to reason about privacy in the digital world and a gateway to understanding how people perceive privacy in a systematic way. Crowdsourcing is a great tool for this method. We are able to ask hundreds of people how they feel about a particular information flow, and then we can capture their input and map it directly onto the CI parameters. We used a simple template to write Yes-or-No questions to ask our crowdsourcing participants:

“Is it acceptable for the [sender] to share the [subject’s] [attribute] with [recipient] [transmission principle]?”

For example:

“Is it acceptable for the student’s professor to share the student’s record of attendance with the department chair if the student is performing poorly? ”

In our experiments, we leveraged Amazon’s Mechanical Turk (AMT) to ask 450 turkers over 1400 such questions. Each question represents a specific contextual information flow that users can approve, disapprove or mark under the Doesn’t Make Sense category; the last category could be used when 1) the sender is unlikely to have the information, 2) the receiver would already have the information, or 3) the question is ambiguous….(More)”