Leveraging the disruptive power of artificial intelligence for fairer opportunities

Makada Henry-Nickie at Brookings: “According to President Obama’s Council of Economic Advisers (CEA), approximately 3.1 million jobs will be rendered obsolete or permanently altered as a consequence of artificial intelligence technologies. Artificial intelligence (AI) will, for the foreseeable future, have a significant disruptive impact on jobs. That said, this disruption can create new opportunities if policymakers choose to harness them—including some with the potential to help address long-standing social inequities. Investing in quality training programs that deliver premium skills, such as computational analysis and cognitive thinking, provides a real opportunity to leverage AI’s disruptive power.

AI’s disruption presents a clear challenge: competition to traditional skilled workers arising from the cross-relevance of data scientists and code engineers, who can adapt quickly to new contexts. Data analytics has become an indispensable feature of successful companies across all industries. ….

Investing in high-quality education and training programs is one way that policymakers proactively attempt to address the workforce challenges presented by artificial intelligence. It is essential that we make affirmative, inclusive choices to ensure that marginalized communities participate equitably in these opportunities.

Policymakers should prioritize understanding the demographics of those most likely to lose jobs in the short-run. As opposed to obsessively assembling case studies, we need to proactively identify policy entrepreneurs who can conceive of training policies that equip workers with technical skills of “long-game” relevance. As IBM points out, “[d]ata democratization impacts every career path, so academia must strive to make data literacy an option, if not a requirement, for every student in any field of study.”

Machines are an equal opportunity displacer, blind to color and socioeconomic status. Effective policy responses require collaborative data collection and coordination among key stakeholders—policymakers, employers, and educational institutions—to  identify at-risk worker groups and to inform workforce development strategies. Machine substitution is purely an efficiency game in which workers overwhelmingly lose. Nevertheless, we can blunt these effects by identifying critical leverage points….

Policymakers can choose to harness AI’s disruptive power to address workforce challenges and redesign fair access to opportunity simultaneously. We should train our collective energies on identifying practical policies that update our current agrarian-based education model, which unfairly disadvantages children from economically segregated neighborhoods…(More)”