Moving Toward the FAIR-R principles: Advancing AI-Ready Data


Paper by Stefaan Verhulst, Andrew Zahuranec and Hannah Chafetz: “In today’s rapidly evolving AI ecosystem, making data ready for AI-optimized for training, fine-tuning, and augmentation-is more critical than ever. While the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) have guided data management and open science, they do not inherently address AI-specific needs. Expanding FAIR to FAIR-R, incorporating Readiness for AI, could accelerate the responsible use of open data in AI applications that serve the public interest. This paper introduces the FAIR-R framework and identifies current efforts for enhancing AI-ready data through improved data labeling, provenance tracking, and new data standards. However, key challenges remain: How can data be structured for AI without compromising ethics? What governance models ensure equitable access? How can AI itself be leveraged to improve data quality? Answering these questions is essential for unlocking the full potential of AI-driven innovation while ensuring responsible and transparent data use…(More)”.