Non-traditional data sources in obesity research: a systematic review of their use in the study of obesogenic environments

Paper by Julia Mariel Wirtz Baker, Sonia Alejandra Pou, Camila Niclis, Eugenia Haluszka & Laura Rosana Aballay: “The field of obesity epidemiology has made extensive use of traditional data sources, such as health surveys and reports from official national statistical systems, whose variety of data can be at times limited to explore a wider range of determinants relevant to obesity. Over time, other data sources began to be incorporated into obesity research, such as geospatial data (web mapping platforms, satellite imagery, and other databases embedded in Geographic Information Systems), social network data (such as Twitter, Facebook, Instagram, or other social networks), digital device data and others. The data revolution, facilitated by the massive use of digital devices with hundreds of millions of users and the emergence of the “Internet of Things” (IoT), has generated huge volumes of data from everywhere: customers, social networks and sensors, in addition to all the traditional sources mentioned above. In the research area, it offers fruitful opportunities, contributing in ways that traditionally sourced research data could not.

An international expert panel in obesity and big data pointed out some key factors in the definition of Big Data, stating that “it is always digital, has a large sample size, and a large volume or variety or velocity of variables that require additional computing power, as well as specialist skills in computer programming, database management and data science analytics”. Our interpretation of non-traditional data sources is an approximation to this definition, assuming that they are sources not traditionally used in obesity epidemiology and environmental studies, which can include digital devices, social media and geospatial data within a GIS, the latter mainly based on complex indexes that require advanced data analysis techniques and expertise.

Beyond the still discussed limitations, Big Data can be assumed as a great opportunity to improve the study of obesogenic environments, since it has been announced as a powerful resource that can provide new knowledge about human behaviour and social phenomena. Besides, it can contribute to the formulation and evaluation of policies and the development of interventions for obesity prevention. However, in this field of research, the suitability of these novel data sources is still a subject of considerable discussion, and their use has not been investigated from the obesogenic environment approach…(More)”.