Jill Lepore in the NewYorker on “What the turn from polls to data science means for democracy”: “…The modern public-opinion poll has been around since the Great Depression, when the response rate—the number of people who take a survey as a percentage of those who were asked—was more than ninety. The participation rate—the number of people who take a survey as a percentage of the population—is far lower. Election pollsters sample only a minuscule portion of the electorate, not uncommonly something on the order of a couple of thousand people out of the more than two hundred million Americans who are eligible to vote. The promise of this work is that the sample is exquisitely representative. But the lower the response rate the harder and more expensive it becomes to realize that promise, which requires both calling many more people and trying to correct for “non-response bias” by giving greater weight to the answers of people from demographic groups that are less likely to respond. Pollster.com’s Mark Blumenthal has recalled how, in the nineteen-eighties, when the response rate at the firm where he was working had fallen to about sixty per cent, people in his office said, “What will happen when it’s only twenty? We won’t be able to be in business!” A typical response rate is now in the single digits.
Meanwhile, polls are wielding greater influence over American elections than ever….
Still, data science can’t solve the biggest problem with polling, because that problem is neither methodological nor technological. It’s political. Pollsters rose to prominence by claiming that measuring public opinion is good for democracy. But what if it’s bad?
A “poll” used to mean the top of your head. Ophelia says of Polonius, “His beard as white as snow: All flaxen was his poll.” When voting involved assembling (all in favor of Smith stand here, all in favor of Jones over there), counting votes required counting heads; that is, counting polls. Eventually, a “poll” came to mean the count itself. By the nineteenth century, to vote was to go “to the polls,” where, more and more, voting was done on paper. Ballots were often printed in newspapers: you’d cut one out and bring it with you. With the turn to the secret ballot, beginning in the eighteen-eighties, the government began supplying the ballots, but newspapers kept printing them; they’d use them to conduct their own polls, called “straw polls.” Before the election, you’d cut out your ballot and mail it to the newspaper, which would make a prediction. Political parties conducted straw polls, too. That’s one of the ways the political machine worked….
Ever since Gallup, two things have been called polls: surveys of opinions and forecasts of election results. (Plenty of other surveys, of course, don’t measure opinions but instead concern status and behavior: Do you own a house? Have you seen a doctor in the past month?) It’s not a bad idea to reserve the term “polls” for the kind meant to produce election forecasts. When Gallup started out, he was skeptical about using a survey to forecast an election: “Such a test is by no means perfect, because a preelection survey must not only measure public opinion in respect to candidates but must also predict just what groups of people will actually take the trouble to cast their ballots.” Also, he didn’t think that predicting elections constituted a public good: “While such forecasts provide an interesting and legitimate activity, they probably serve no great social purpose.” Then why do it? Gallup conducted polls only to prove the accuracy of his surveys, there being no other way to demonstrate it. The polls themselves, he thought, were pointless…
If public-opinion polling is the child of a strained marriage between the press and the academy, data science is the child of a rocky marriage between the academy and Silicon Valley. The term “data science” was coined in 1960, one year after the Democratic National Committee hired Simulmatics Corporation, a company founded by Ithiel de Sola Pool, a political scientist from M.I.T., to provide strategic analysis in advance of the upcoming Presidential election. Pool and his team collected punch cards from pollsters who had archived more than sixty polls from the elections of 1952, 1954, 1956, 1958, and 1960, representing more than a hundred thousand interviews, and fed them into a UNIVAC. They then sorted voters into four hundred and eighty possible types (for example, “Eastern, metropolitan, lower-income, white, Catholic, female Democrat”) and sorted issues into fifty-two clusters (for example, foreign aid). Simulmatics’ first task, completed just before the Democratic National Convention, was a study of “the Negro vote in the North.” Its report, which is thought to have influenced the civil-rights paragraphs added to the Party’s platform, concluded that between 1954 and 1956 “a small but significant shift to the Republicans occurred among Northern Negroes, which cost the Democrats about 1 per cent of the total votes in 8 key states.” After the nominating convention, the D.N.C. commissioned Simulmatics to prepare three more reports, including one that involved running simulations about different ways in which Kennedy might discuss his Catholicism….
Data science may well turn out to be as flawed as public-opinion polling. But a stage in the development of any new tool is to imagine that you’ve perfected it, in order to ponder its consequences. I asked Hilton to suppose that there existed a flawless tool for measuring public opinion, accurately and instantly, a tool available to voters and politicians alike. Imagine that you’re a member of Congress, I said, and you’re about to head into the House to vote on an act—let’s call it the Smeadwell-Nutley Act. As you do, you use an app called iThePublic to learn the opinions of your constituents. You oppose Smeadwell-Nutley; your constituents are seventy-nine per cent in favor of it. Your constituents will instantly know how you’ve voted, and many have set up an account with Crowdpac to make automatic campaign donations. If you vote against the proposed legislation, your constituents will stop giving money to your reëlection campaign. If, contrary to your convictions but in line with your iThePublic, you vote for Smeadwell-Nutley, would that be democracy? …(More)”