Digital surveillance capitalism and cities: data, democracy and activism


Paper by Ashish Makanadar: “The rapid convergence of urbanization and digital technologies is fundamentally reshaping city governance through data-driven systems. This transformation, however, is largely controlled by surveillance capitalist entities, raising profound concerns for democratic values and citizen rights. As private interests extract behavioral data from public spaces without adequate oversight, the principles of transparency and civic participation are increasingly threatened. This erosion of data sovereignty represents a critical juncture in urban development, demanding urgent interdisciplinary attention. This comment proposes a paradigm shift in urban data governance, advocating for the reclamation of data sovereignty to prioritize community interests over corporate profit motives. The paper explores socio-technical pathways to achieve this goal, focusing on grassroots approaches that assert ‘data dignity’ through privacy-enhancing technologies and digital anonymity tools. It argues for the creation of distributed digital commons as viable alternatives to proprietary data silos, thereby democratizing access to and control over urban data. The discussion extends to long-term strategies, examining the potential of blockchain technologies and decentralized autonomous organizations in enabling self-sovereign data economies. These emerging models offer a vision of ‘crypto-cities’ liberated from extractive data practices, fostering environments where residents retain autonomy over their digital footprints. By critically evaluating these approaches, the paper aims to catalyze a reimagining of smart city technologies aligned with principles of equity, shared prosperity, and citizen empowerment. This realignment is essential for preserving democratic values in an increasingly digitized urban landscape…(More)”.

Shifting Patterns of Social Interaction: Exploring the Social Life of Urban Spaces Through A.I.


Paper by Arianna Salazar-Miranda, et al: “We analyze changes in pedestrian behavior over a 30-year period in four urban public spaces located in New York, Boston, and Philadelphia. Building on William Whyte’s observational work from 1980, where he manually recorded pedestrian behaviors, we employ computer vision and deep learning techniques to examine video footage from 1979-80 and 2008-10. Our analysis measures changes in walking speed, lingering behavior, group sizes, and group formation. We find that the average walking speed has increased by 15%, while the time spent lingering in these spaces has halved across all locations. Although the percentage of pedestrians walking alone remained relatively stable (from 67% to 68%), the frequency of group encounters declined, indicating fewer interactions in public spaces. This shift suggests that urban residents increasingly view streets as thoroughfares rather than as social spaces, which has important implications for the role of public spaces in fostering social engagement…(More)”.

Courts in Buenos Aires are using ChatGPT to draft rulings


Article by Victoria Mendizabal: “In May, the Public Prosecution Service of the City of Buenos Aires began using generative AI to predict rulings for some public employment cases related to salary demands.

Since then, justice employees at the office for contentious administrative and tax matters of the city of Buenos Aires have uploaded case documents into ChatGPT, which analyzes patterns, offers a preliminary classification from a catalog of templates, and drafts a decision. So far, ChatGPT has been used for 20 legal sentences.

The use of generative AI has cut down the time it takes to draft a sentence from an hour to about 10 minutes, according to recent studies conducted by the office.

“We, as professionals, are not the main characters anymore. We have become editors,” Juan Corvalán, deputy attorney general in contentious administrative and tax matters, told Rest of World.

The introduction of generative AI tools has improved efficiency at the office, but it has also prompted concerns within the judiciary and among independent legal experts about possiblebiases, the treatment of personal data, and the emergence of hallucinations. Similar concerns have echoed beyond Argentina’s borders.

“We, as professionals, are not the main characters anymore. We have become editors.”

“Any inconsistent use, such as sharing sensitive information, could have a considerable legal cost,” Lucas Barreiro, a lawyer specializing in personal data protection and a member of Privaia, a civil association dedicated to the defense of human rights in the digital era, told Rest of World.

Judges in the U.S. have voiced skepticism about the use of generative AI in the courts, with Manhattan Federal Judge Edgardo Ramos saying earlier this year that “ChatGPT has been shown to be an unreliable resource.” In Colombia and the Netherlands, the use of ChatGPT by judges was criticized by local experts. But not everyone is concerned: A court of appeals judge in the U.K. who used ChatGPT to write part of a judgment said that it was “jolly useful.”

For Corvalán, the move to generative AI is the culmination of a years-long transformation within the City of Buenos Aires’ attorney general’s office.In 2017, Corvalán put together a group of developers to train an AI-powered system called PROMETEA, which was intended to automate judicial tasks and expedite case proceedings. The team used more than 300,000 rulings and case files related to housing protection, public employment bonuses, enforcement of unpaid fines, and denial of cab licenses to individuals with criminal records…(More)”.

Quantitative Urban Economics


Paper by Stephen J. Redding: “This paper reviews recent quantitative urban models. These models are sufficiently rich to capture observed features of the data, such as many asymmetric locations and a rich geography of the transport network. Yet these models remain sufficiently tractable as to permit an analytical characterization of their theoretical properties. With only a small number of structural parameters (elasticities) to be estimated, they lend themselves to transparent identification. As they rationalize the observed spatial distribution of economic activity within cities, they can be used to undertake counterfactuals for the impact of empirically-realistic public-policy interventions on this observed distribution. Empirical applications include estimating the strength of agglomeration economies and evaluating the impact of transport infrastructure improvements (e.g., railroads, roads, Rapid Bus Transit Systems), zoning and land use regulations, place-based policies, and new technologies such as remote working…(More)”.

Addressing Data Challenges to Drive the Transformation of Smart Cities


Paper by Ekaterina Gilman et al: “Cities serve as vital hubs of economic activity and knowledge generation and dissemination. As such, cities bear a significant responsibility to uphold environmental protection measures while promoting the welfare and living comfort of their residents. There are diverse views on the development of smart cities, from integrating Information and Communication Technologies into urban environments for better operational decisions to supporting sustainability, wealth, and comfort of people. However, for all these cases, data are the key ingredient and enabler for the vision and realization of smart cities. This article explores the challenges associated with smart city data. We start with gaining an understanding of the concept of a smart city, how to measure that the city is a smart one, and what architectures and platforms exist to develop one. Afterwards, we research the challenges associated with the data of the cities, including availability, heterogeneity, management, analysis, privacy, and security. Finally, we discuss ethical issues. This article aims to serve as a “one-stop shop” covering data-related issues of smart cities with references for diving deeper into particular topics of interest…(More)”.

Long-term validation of inner-urban mobility metrics derived from Twitter/X


Paper by Steffen Knoblauch et al: “Urban mobility analysis using Twitter as a proxy has gained significant attention in various application fields; however, long-term validation studies are scarce. This paper addresses this gap by assessing the reliability of Twitter data for modeling inner-urban mobility dynamics over a 27-month period in the. metropolitan area of Rio de Janeiro, Brazil. The evaluation involves the validation of Twitter-derived mobility estimates at both temporal and spatial scales, employing over 1.6 × 1011 mobile phone records of around three million users during the non-stationary mobility period from April 2020 to. June 2022, which coincided with the COVID-19 pandemic. The results highlight the need for caution when using Twitter for short-term modeling of urban mobility flows. Short-term inference can be influenced by Twitter policy changes and the availability of publicly accessible tweets. On the other hand, this long-term study demonstrates that employing multiple mobility metrics simultaneously, analyzing dynamic and static mobility changes concurrently, and employing robust preprocessing techniques such as rolling window downsampling can enhance the inference capabilities of Twitter data. These novel insights gained from a long-term perspective are vital, as Twitter – rebranded to X in 2023 – is extensively used by researchers worldwide to infer human movement patterns. Since conclusions drawn from studies using Twitter could be used to inform public policy, emergency response, and urban planning, evaluating the reliability of this data is of utmost importance…(More)”.

Understanding local government responsible AI strategy: An international municipal policy document analysis


Paper by Anne David et al: “The burgeoning capabilities of artificial intelligence (AI) have prompted numerous local governments worldwide to consider its integration into their operations. Nevertheless, instances of notable AI failures have heightened ethical concerns, emphasising the imperative for local governments to approach the adoption of AI technologies in a responsible manner. While local government AI guidelines endeavour to incorporate characteristics of responsible innovation and technology (RIT), it remains essential to assess the extent to which these characteristics have been integrated into policy guidelines to facilitate more effective AI governance in the future. This study closely examines local government policy documents (n = 26) through the lens of RIT, employing directed content analysis with thematic data analysis software. The results reveal that: (a) Not all RIT characteristics have been given equal consideration in these policy documents; (b) Participatory and deliberate considerations were the most frequently mentioned responsible AI characteristics in policy documents; (c) Adaptable, explainable, sustainable, and accountable considerations were the least present responsible AI characteristics in policy documents; (d) Many of the considerations overlapped with each other as local governments were at the early stages of identifying them. Furthermore, the paper summarised strategies aimed at assisting local authorities in identifying their strengths and weaknesses in responsible AI characteristics, thereby facilitating their transformation into governing entities with responsible AI practices. The study informs local government policymakers, practitioners, and researchers on the critical aspects of responsible AI policymaking…(More)” See also: AI Localism

City Tech


Book by Rob Walker: “The world is rapidly urbanizing, and experts predict that up to 80 percent of the population will live in cities by 2050. To accommodate that growth while ensuring quality of life for all residents, cities are increasingly turning to technology. From apps that make it easier for citizens to pitch in on civic improvement projects to comprehensive plans for smarter streets and neighborhoods, new tools and approaches are taking root across the United States and around the world. In this thoughtful, inquisitive collection, Rob Walker—former New York Times columnist and author of the City Tech column for Land Lines magazine—investigates the new technologies afoot and their implications for planners, policymakers, residents, and the virtual and literal landscapes of the cities we call home…(More)”

Federal Court Invalidates NYC Law Requiring Food Delivery Apps to Share Customer Data with Restaurants


Article by Hunton, Andrews, Kurth: “On September 24, 2024, a federal district court held that New York City’s “Customer Data Law” violates the First Amendment. Passed in the summer of 2021, the law requires food-delivery apps to share customer-specific data with restaurants that prepare delivered meals.

The New York City Council enacted the Customer Data Law to boost the local restaurant industry in the wake of the pandemic. The law requires food-delivery apps to provide restaurants (upon the restaurants’ request) with each diner’s full name, email address, phone number, delivery address, and order contents. Customers may opt out of such sharing. The law’s supporters argue that requiring such disclosure addresses exploitation by the delivery apps and helps restaurants advertise more effectively.

Normally, when a customer places an order through a food-delivery app, the app provides the restaurant with the customer’s first name, last initial and food order. Food-delivery apps share aggregate data analytics with restaurants but generally do not share customer-specific data beyond the information necessary to fulfill an order. Some apps, for example, provide restaurants with data related to their menu performance, customer feedback and daily operations.

Major food-delivery app companies challenged the Customer Data Law, arguing that its data sharing requirement compels speech impermissibly under the First Amendment. Siding with the apps, the U.S. District Court for the Southern District of New York declared the city’s law invalid, holding that its data sharing requirement is not appropriately tailored to a substantial government interest…(More)”.

Need for Co-creating Urban Data Collaborative


Blog by Gaurav Godhwani: “…The Government of India has initiated various urban reforms for our cities like — Atal Mission for Rejuvenation and Urban Transformation 2.0 (AMRUT 2.0), Smart Cities Mission (SCM), Swachh Bharat Mission 2.0 (SBM-Urban 2.0) and development of Urban & Industrial Corridors. To help empower cities with data, the Ministry of Housing & Urban Affairs(MoHUA) has also launched various data initiatives including — DataSmart Cities StrategyData Maturity Assessment FrameworkSmart Cities Open Data PortalCity Innovation Exchange, India Urban Data Exchange and the India Urban Observatory.

Unfortunately, most of the urban data remains in silos and capacities for our cities to harness urban data to improve decision-making, strengthen citizen participation continues to be limited. As per the last Data Maturity Assessment Framework (DMAF) assessment conducted in November 2020 by MoHUA, among 100 smart cities only 45 cities have drafted/ approved their City Data Policies with just 32 cities having a dedicated data budget in 2020–21 for data-related activities. Moreover, in-terms of fostering data collaborations, only 12 cities formed data alliances to achieve tangible outcomes. We hope smart cities continue this practice by conducting a yearly self-assessment to progress in their journey to harness data for improving their urban planning.

Seeding Urban Data Collaborative to advance City-level Data Engagements

There is a need to bring together a diverse set of stakeholders including governments, civil societies, academia, businesses and startups, volunteer groups and more to share and exchange urban data in a secure, standardised and interoperable manner, deriving more value from re-using data for participatory urban development. Along with improving data sharing among these stakeholders, it is necessary to regularly convene, ideate and conduct capacity building sessions and institutionalise data practices.

Urban Data Collaborative can bring together such diverse stakeholders who could address some of these perennial challenges in the ecosystem while spurring innovation…(More)”