How Bad Is China’s Economy? The Data Needed to Answer Is Vanishing


Article by Rebecca Feng and Jason Douglas: “Not long ago, anyone could comb through a wide range of official data from China. Then it started to disappear. 

Land sales measures, foreign investment data and unemployment indicators have gone dark in recent years. Data on cremations and a business confidence index have been cut off. Even official soy sauce production reports are gone.

In all, Chinese officials have stopped publishing hundreds of data points once used by researchers and investors, according to a Wall Street Journal analysis. 

In most cases, Chinese authorities haven’t given any reason for ending or withholding data. But the missing numbers have come as the world’s second biggest economy has stumbled under the weight of excessive debt, a crumbling real-estate market and other troubles—spurring heavy-handed efforts by authorities to control the narrative.China’s National Bureau of Statistics stopped publishing some numbers related to unemployment in urban areas in recent years. After an anonymous user on the bureau’s website asked why one of those data points had disappeared, the bureau said only that the ministry that provided it stopped sharing the data.

The disappearing data have made it harder for people to know what’s going on in China at a pivotal time, with the trade war between Washington and Beijing expected to hit China hard and weaken global growth. Plunging trade with the U.S. has already led to production shutdowns and job cuts.

Getting a true read on China’s growth has always been tricky. Many economists have long questioned the reliability of China’s headline gross domestic product data, and concerns have intensified recently. Official figures put GDP growth at 5% last year and 5.2% in 2023, but some have estimated that Beijing overstated its numbers by as much as 2 to 3 percentage points. 

To get what they consider to be more realistic assessments of China’s growth, economists have turned to alternative sources such as movie box office revenues, satellite data on the intensity of nighttime lights, the operating rates of cement factories and electricity generation by major power companies. Some parse location data from mapping services run by private companies such as Chinese tech giant Baidu to gauge business activity. 

One economist said he has been assessing the health of China’s services sector by counting news stories about owners of gyms and beauty salons who abruptly close up and skip town with users’ membership fees…(More)”.

The Dangers of AI Nationalism and Beggar-Thy-Neighbour Policies


Paper by Susan Aaronson: “As they attempt to nurture and govern AI, some nations are acting in ways that – with or without direct intent – discriminate among foreign market actors. For example, some governments are excluding foreign firms from access to incentives for high-speed computing, or requiring local content in the AI supply chain, or adopting export controls for the advanced chips that power many types of AI. If policy makers in country X can limit access to the building blocks of AI – whether funds, data or high-speed computing power – it might slow down or limit the AI prowess of its competitors in country Y and/or Z. At the same time, however, such policies could violate international trade norms of non-discrimination. Moreover, if policy makers can shape regulations in ways that benefit local AI competitors, they may also impede the competitiveness of other nations’ AI developers. Such regulatory policies could be discriminatory and breach international trade rules as well as long-standing rules about how nations and firms compete – which, over time, could reduce trust among nations. In this article, the author attempts to illuminate AI nationalism and its consequences by answering four questions:

– What are nations doing to nurture AI capacity within their borders?

Are some of these actions trade distorting?

 – Are some nations adopting twenty-first century beggar thy neighbour policies?

– What are the implications of such trade-distorting actions?

The author finds that AI nationalist policies appear to help countries with the largest and most established technology firms across multiple levels of the AI value chain. Hence, policy makers’ efforts to dominate these sectors, as example through large investment sums or beggar thy neighbour policies are not a good way to build trust…(More)”.

Balancing Data Sharing and Privacy to Enhance Integrity and Trust in Government Programs


Paper by National Academy of Public Administration: “Improper payments and fraud cost the federal government hundreds of billions of dollars each year, wasting taxpayer money and eroding public trust. At the same time, agencies are increasingly expected to do more with less. Finding better ways to share data, without compromising privacy, is critical for ensuring program integrity in a resource-constrained environment.

Key Takeaways

  • Data sharing strengthens program integrity and fraud prevention. Agencies and oversight bodies like GAO and OIGs have uncovered large-scale fraud by using shared data.
  • Opportunities exist to streamline and expedite the compliance processes required by privacy laws and reduce systemic barriers to sharing data across federal agencies.
  • Targeted reforms can address these barriers while protecting privacy:
    1. OMB could issue guidance to authorize fraud prevention as a routine use in System of Records Notices.
    2. Congress could enact special authorities or exemptions for data sharing that supports program integrity and fraud prevention.
    3. A centralized data platform could help to drive cultural change and support secure, responsible data sharing…(More)”

Glorious RAGs : A Safer Path to Using AI in the Social Sector


Blog by Jim Fruchterman: “Social sector leaders ask me all the time for advice on using AI. As someone who started for-profit machine learning (AI) companies in the 1980s, but then pivoted to running nonprofit social enterprises, I’m often the first person from Silicon Valley that many nonprofit leaders have met. I joke that my role is often that of “anti-consultant,” talking leaders out of doing an app, a blockchain (smile) or firing half their staff because of AI. Recently, much of my role has been tamping down the excessive expectations being bandied about for the impact of AI on organizations. However, two years into the latest AI fad wave created by ChatGPT and its LLM (large language model) peers, more and more of the leaders are describing eminently sensible applications of LLMs to their programs. The most frequent of these approaches can be described as variations on “Retrieval-Augmented Generation,” also known as RAG. I am quite enthusiastic about using RAG for social impact, because it addresses a real need and supplies guardrails for using LLMs effectively…(More)”

Smart Cities:Technologies and Policy Options to Enhance Services and Transparency


GAO Report: “Cities across the nation are using “smart city” technologies like traffic cameras and gunshot detectors to improve public services. In this technology assessment, we looked at their use in transportation and law enforcement.

Experts and city officials reported multiple benefits. For example, Houston uses cameras and Bluetooth sensors to measure traffic flow and adjust signal timing. Other cities use license plate readers to find stolen vehicles.

But the technologies can be costly and the benefits unclear. The data they collect may be sold, raising privacy and civil liberties concerns. We offer three policy options to address such challenges…(More)”.

Understanding and Addressing Misinformation About Science


Report by National Academies of Sciences, Engineering, and Medicine: “Our current information ecosystem makes it easier for misinformation about science to spread and harder for people to figure out what is scientifically accurate. Proactive solutions are needed to address misinformation about science, an issue of public concern given its potential to cause harm at individual, community, and societal levels. Improving access to high-quality scientific information can fill information voids that exist for topics of interest to people, reducing the likelihood of exposure to and uptake of misinformation about science. Misinformation is commonly perceived as a matter of bad actors maliciously misleading the public, but misinformation about science arises both intentionally and inadvertently and from a wide range of sources…(More)”.

AI action plan database


A project by the Institute for Progress: “In January 2025, President Trump tasked the Office of Science and Technology Policy with creating an AI Action Plan to promote American AI Leadership. The government requested input from the public, and received 10,068 submissions. The database below summarizes specific recommendations from these submissions. … We used AI to extract recommendations from each submission, and to tag them with relevant information. Click on a recommendation to learn more about it. See our analysis of common themes and ideas across these recommendations…(More)”.

Technical Tiers: A New Classification Framework for Global AI Workforce Analysis


Report by Siddhi Pal, Catherine Schneider and Ruggero Marino Lazzaroni: “… introduces a novel three-tiered classification system for global AI talent that addresses significant methodological limitations in existing workforce analyses, by distinguishing between different skill categories within the existing AI talent pool. By distinguishing between non-technical roles (Category 0), technical software development (Category 1), and advanced deep learning specialization (Category 2), our framework enables precise examination of AI workforce dynamics at a pivotal moment in global AI policy.

Through our analysis of a sample of 1.6 million individuals in the AI talent pool across 31 countries, we’ve uncovered clear patterns in technical talent distribution that significantly impact Europe’s AI ambitions. Asian nations hold an advantage in specialized AI expertise, with South Korea (27%), Israel (23%), and Japan (20%) maintaining the highest proportions of Category 2 talent. Within Europe, Poland and Germany stand out as leaders in specialized AI talent. This may be connected to their initiatives to attract tech companies and investments in elite research institutions, though further research is needed to confirm these relationships.

Our data also reveals a shifting landscape of global talent flows. Research shows that countries employing points-based immigration systems attract 1.5 times more high-skilled migrants than those using demand-led approaches. This finding takes on new significance in light of recent geopolitical developments affecting scientific research globally. As restrictive policies and funding cuts create uncertainty for researchers in the United States, one of the big destinations for European AI talent, the way nations position their regulatory environments, scientific freedoms, and research infrastructure will increasingly determine their ability to attract and retain specialized AI talent.

The gender analysis in our study illuminates another dimension of competitive advantage. Contrary to the overall AI talent pool, EU countries lead in female representation in highly technical roles (Category 2), occupying seven of the top ten global rankings. Finland, Czechia, and Italy have the highest proportion of female representation in Category 2 roles globally (39%, 31%, and 28%, respectively). This gender diversity represents not merely a social achievement but a potential strategic asset in AI innovation, particularly as global coalitions increasingly emphasize the importance of diverse perspectives in AI development…(More)”

Mapping local knowledge supports science and stewardship


Paper by Sarah C. Risley, Melissa L. Britsch, Joshua S. Stoll & Heather M. Leslie: “Coastal marine social–ecological systems are experiencing rapid change. Yet, many coastal communities are challenged by incomplete data to inform collaborative research and stewardship. We investigated the role of participatory mapping of local knowledge in addressing these challenges. We used participatory mapping and semi-structured interviews to document local knowledge in two focal social–ecological systems in Maine, USA. By co-producing fine-scale characterizations of coastal marine social–ecological systems, highlighting local questions and needs, and generating locally relevant hypotheses on system change, our research demonstrates how participatory mapping and local knowledge can enhance decision-making capacity in collaborative research and stewardship. The results of this study directly informed a collaborative research project to document changes in multiple shellfish species, shellfish predators, and shellfish harvester behavior and other human activities. This research demonstrates that local knowledge can be a keystone component of collaborative social–ecological systems research and community-lead environmental stewardship…(More)”.

Artificial Intelligence: Generative AI’s Environmental and Human Effects


GAO Report: “Generative artificial intelligence (AI) could revolutionize entire industries. In the nearer term, it may dramatically increase productivity and transform daily tasks in many sectors. However, both its benefits and risks, including its environmental and human effects, are unknown or unclear.

Generative AI uses significant energy and water resources, but companies are generally not reporting details of these uses. Most estimates of environmental effects of generative AI technologies have focused on quantifying the energy consumed, and carbon emissions associated with generating that energy, required to train the generative AI model. Estimates of water consumption by generative AI are limited. Generative AI is expected to be a driving force for data center demand, but what portion of data center electricity consumption is related to generative AI is unclear. According to the International Energy Agency, U.S. data center electricity consumption was approximately 4 percent of U.S. electricity demand in 2022 and could be 6 percent of demand in 2026.

While generative AI may bring beneficial effects for people, GAO highlights five risks and challenges that could result in negative human effects on society, culture, and people from generative AI (see figure). For example, unsafe systems may produce outputs that compromise safety, such as inaccurate information, undesirable content, or the enabling of malicious behavior. However, definitive statements about these risks and challenges are difficult to make because generative AI is rapidly evolving, and private developers do not disclose some key technical information.

Selected generative artificial antelligence risks and challenges that could result in human effects

GAO identified policy options to consider that could enhance the benefits or address the challenges of environmental and human effects of generative AI. These policy options identify possible actions by policymakers, which include Congress, federal agencies, state and local governments, academic and research institutions, and industry. In addition, policymakers could choose to maintain the status quo, whereby they would not take additional action beyond current efforts. See below for details on the policy options…(More)”.