Urban Development Needs Systems Thinking


Article by Yaera Chung: “More than three decades after the collapse of the Soviet Union, cities in Eastern Europe and Central Asia (EECA) continue to grapple with economic stagnation, aging infrastructure, and environmental degradation while also facing new pressures from climate change and regional conflicts. In this context, traditional city planning, which tackles problems in isolation, is struggling to keep up. Urban strategies often rely on siloed, one-off interventions that fail to reflect the complexity of social challenges or adapt to shifting conditions. As a result, efforts are frequently fragmented, overlook root causes, and miss opportunities for long-term, cross-sector collaboration.

Instead of addressing one issue at a time, cities need to develop a set of coordinated, interlinked solutions that tackle multiple urban challenges simultaneously and align efforts across sectors. As part of a broader strategy to address environmental, economic, and social goals at once, for example, cities might advance a range of initiatives, such as transforming biowaste into resources, redesigning streets to reduce air pollution, and creating local green jobs. These kinds of “portfolio” approaches are leading to lasting and systems-level change.

Since 2021, the United Nations Development Programme (UNDP) has been collaborating with 15 cities across EECA to solve problems in ways that embrace complexity and interconnectedness. Selected through open calls under two UNDP initiatives, Mayors for Economic Growth and the City Experiment Fund, these cities demonstrated a strong interest in tackling systemic issues. Their proposals highlighted the problems they face, their capacity for innovation, and local initiatives and partnerships.

Their ongoing journeys have surfaced four lessons that can help other cities move beyond conventional planning pitfalls, and adopt a more responsive, inclusive, and sustainable approach to urban development…(More)”.

The New Control Society


Essay by Jon Askonas: “Let me tell you two stories about the Internet. The first story is so familiar it hardly warrants retelling. It goes like this. The Internet is breaking the old powers of the state, the media, the church, and every other institution. It is even breaking society itself. By subjecting their helpless users to ever more potent algorithms to boost engagement, powerful platforms distort reality and disrupt our politics. YouTube radicalizes young men into misogynists. TikTok turns moderate progressives into Hamas supporters. Facebook boosts election denialism; or it censors stories doubting the safety of mRNA vaccines. On the world stage, the fate of nations hinges on whether Twitter promotes color revolutions, WeChat censors Hong Kong protesters, and Facebook ads boost the Brexit campaign. The platforms are producing a fractured society: diversity of opinion is running amok, consensus is dead.

The second story is very different. In the 2023 essay “The age of average,” Alex Murrell recounts a project undertaken in the 1990s by Russian artists Vitaly Komar and Alexander Melamid. The artists commissioned a public affairs firm to poll over a thousand Americans on their ideal painting: the colors they liked, the subjects they gravitated toward, and so forth. Using the aggregate data, the artists created a painting, and they repeated this procedure in a number of other countries, exhibiting the final collection as an art exhibition called The People’s Choice. What they found, by and large, was not individual and national difference but the opposite: shocking uniformity — landscapes with a few animals and human figures with trees and a blue-hued color palette.

And it isn’t just paintings that are converging, Murrell argues. Car designs look more like each other than ever. Color is disappearing as most cars become white, gray, or black. From Sydney to Riyadh to Cleveland, an upscale coffee shop is more likely than ever to bear the same design features: reclaimed wood, hanging Edison bulbs, marble countertops. So is an Airbnb. Even celebrities increasingly look the same, with the rising ubiquity of “Instagram face” driven by cosmetic injectables and Photoshop touch-ups.

Murrell focuses on design, but the same trend holds elsewhere: Kirk Goldsberry, a basketball statistician, has shown that the top two hundred shot locations in the NBA today, which twenty years ago formed a wide array of the court, now form a narrow ring at the three-point line, with a dense cluster near the hoop. The less said about the sameness of pop melodies or Hollywood movies, the better.

As we approach the moment when all information everywhere from all time is available to everyone at once, what we find is not new artistic energy, not explosive diversity, but stifling sameness. Everything is converging — and it’s happening even as the power of the old monopolies and centralized tastemakers is broken up.

Are the powerful platforms now in charge? Or are the forces at work today something even bigger?..(More)”.

Indiana Faces a Data Center Backlash


Article by Matthew Zeitlin: “Indiana has power. Indiana has transmission. Indiana has a business-friendly Republican government. Indiana is close to Chicago but — crucially — not in Illinois. All of this has led to a huge surge of data center development in the “Crossroads of America.” It has also led to an upswell of local opposition.

There are almost 30 active data center proposals in Indiana, plus five that have already been rejected in the past year, according to data collected by the environmentalist group Citizens Action Coalition. GoogleAmazon, and Meta have all announced projects in the state since the beginning of 2024.

Nipsco, one of the state’s utilities, has projected 2,600 megawatts worth of new load by the middle of the next decade as its base scenario, mostly attributable to “large economic development projects.” In a more aggressive scenario, it sees 3,200 megawatts of new load — that’s three large nuclear reactors’ worth — by 2028 and 8,600 megawatts by 2035. While short of, say, the almost 36,500 megawatts worth of load growth planned in Georgia for the next decade, it’s still a vast range of outcomes that requires some kind of advanced planning.

That new electricity consumption will likely be powered by fossil fuels. Projected load growth in the state has extended a lifeline to Indiana’s coal-fired power plants, with retirement dates for some of the fleet being pushed out to late in the 2030s. It’s also created a market for new natural gas-fired plants that utilities say are necessary to power the expected new load.

State and local political leaders have greeted these new data center projects with enthusiasm, Ben Inskeep, the program director at CAC, told me. “Economic development is king here,” he said. “That is what all the politicians and regulators say their number one concern is: attracting economic development.”..(More)”.

Policy Implications of DeepSeek AI’s Talent Base


Brief by Amy Zegart and Emerson Johnston: “Chinese startup DeepSeek’s highly capable R1 and V3 models challenged prevailing beliefs about the United States’ advantage in AI innovation, but public debate focused more on the company’s training data and computing power than human talent. We analyzed data on the 223 authors listed on DeepSeek’s five foundational technical research papers, including information on their research output, citations, and institutional affiliations, to identify notable talent patterns. Nearly all of DeepSeek’s researchers were educated or trained in China, and more than half never left China for schooling or work. Of the quarter or so that did gain some experience in the United States, most returned to China to work on AI development there. These findings challenge the core assumption that the United States holds a natural AI talent lead. Policymakers need to reinvest in competing to attract and retain the world’s best AI talent while bolstering STEM education to maintain competitiveness…(More)”.

How Bad Is China’s Economy? The Data Needed to Answer Is Vanishing


Article by Rebecca Feng and Jason Douglas: “Not long ago, anyone could comb through a wide range of official data from China. Then it started to disappear. 

Land sales measures, foreign investment data and unemployment indicators have gone dark in recent years. Data on cremations and a business confidence index have been cut off. Even official soy sauce production reports are gone.

In all, Chinese officials have stopped publishing hundreds of data points once used by researchers and investors, according to a Wall Street Journal analysis. 

In most cases, Chinese authorities haven’t given any reason for ending or withholding data. But the missing numbers have come as the world’s second biggest economy has stumbled under the weight of excessive debt, a crumbling real-estate market and other troubles—spurring heavy-handed efforts by authorities to control the narrative.China’s National Bureau of Statistics stopped publishing some numbers related to unemployment in urban areas in recent years. After an anonymous user on the bureau’s website asked why one of those data points had disappeared, the bureau said only that the ministry that provided it stopped sharing the data.

The disappearing data have made it harder for people to know what’s going on in China at a pivotal time, with the trade war between Washington and Beijing expected to hit China hard and weaken global growth. Plunging trade with the U.S. has already led to production shutdowns and job cuts.

Getting a true read on China’s growth has always been tricky. Many economists have long questioned the reliability of China’s headline gross domestic product data, and concerns have intensified recently. Official figures put GDP growth at 5% last year and 5.2% in 2023, but some have estimated that Beijing overstated its numbers by as much as 2 to 3 percentage points. 

To get what they consider to be more realistic assessments of China’s growth, economists have turned to alternative sources such as movie box office revenues, satellite data on the intensity of nighttime lights, the operating rates of cement factories and electricity generation by major power companies. Some parse location data from mapping services run by private companies such as Chinese tech giant Baidu to gauge business activity. 

One economist said he has been assessing the health of China’s services sector by counting news stories about owners of gyms and beauty salons who abruptly close up and skip town with users’ membership fees…(More)”.

Technical Tiers: A New Classification Framework for Global AI Workforce Analysis


Report by Siddhi Pal, Catherine Schneider and Ruggero Marino Lazzaroni: “… introduces a novel three-tiered classification system for global AI talent that addresses significant methodological limitations in existing workforce analyses, by distinguishing between different skill categories within the existing AI talent pool. By distinguishing between non-technical roles (Category 0), technical software development (Category 1), and advanced deep learning specialization (Category 2), our framework enables precise examination of AI workforce dynamics at a pivotal moment in global AI policy.

Through our analysis of a sample of 1.6 million individuals in the AI talent pool across 31 countries, we’ve uncovered clear patterns in technical talent distribution that significantly impact Europe’s AI ambitions. Asian nations hold an advantage in specialized AI expertise, with South Korea (27%), Israel (23%), and Japan (20%) maintaining the highest proportions of Category 2 talent. Within Europe, Poland and Germany stand out as leaders in specialized AI talent. This may be connected to their initiatives to attract tech companies and investments in elite research institutions, though further research is needed to confirm these relationships.

Our data also reveals a shifting landscape of global talent flows. Research shows that countries employing points-based immigration systems attract 1.5 times more high-skilled migrants than those using demand-led approaches. This finding takes on new significance in light of recent geopolitical developments affecting scientific research globally. As restrictive policies and funding cuts create uncertainty for researchers in the United States, one of the big destinations for European AI talent, the way nations position their regulatory environments, scientific freedoms, and research infrastructure will increasingly determine their ability to attract and retain specialized AI talent.

The gender analysis in our study illuminates another dimension of competitive advantage. Contrary to the overall AI talent pool, EU countries lead in female representation in highly technical roles (Category 2), occupying seven of the top ten global rankings. Finland, Czechia, and Italy have the highest proportion of female representation in Category 2 roles globally (39%, 31%, and 28%, respectively). This gender diversity represents not merely a social achievement but a potential strategic asset in AI innovation, particularly as global coalitions increasingly emphasize the importance of diverse perspectives in AI development…(More)”

Hundreds of scholars say U.S. is swiftly heading toward authoritarianism


Article by Frank Langfitt: “A survey of more than 500 political scientists finds that the vast majority think the United States is moving swiftly from liberal democracy toward some form of authoritarianism.

In the benchmark survey, known as Bright Line Watch, U.S.-based professors rate the performance of American democracy on a scale from zero (complete dictatorship) to 100 (perfect democracy). After President Trump’s election in November, scholars gave American democracy a rating of 67. Several weeks into Trump’s second term, that figure plummeted to 55.

“That’s a precipitous drop,” says John Carey, a professor of government at Dartmouth and co-director of Bright Line Watch. “There’s certainly consensus: We’re moving in the wrong direction.”…Not all political scientists view Trump with alarm, but many like Carey who focus on democracy and authoritarianism are deeply troubled by Trump’s attempts to expand executive power over his first several months in office.

“We’ve slid into some form of authoritarianism,” says Steven Levitsky, a professor of government at Harvard, and co-author of How Democracies Die. “It is relatively mild compared to some others. It is certainly reversible, but we are no longer living in a liberal democracy.”…Kim Lane Scheppele, a Princeton sociologist who has spent years tracking Hungary, is also deeply concerned: “We are on a very fast slide into what’s called competitive authoritarianism.”

When these scholars use the term “authoritarianism,” they aren’t talking about a system like China’s, a one-party state with no meaningful elections. Instead, they are referring to something called “competitive authoritarianism,” the kind scholars say they see in countries such as Hungary and Turkey.

In a competitive authoritarian system, a leader comes to power democratically and then erodes the system of checks and balances. Typically, the executive fills the civil service and key appointments — including the prosecutor’s office and judiciary — with loyalists. He or she then attacks the media, universities and nongovernmental organizations to blunt public criticism and tilt the electoral playing field in the ruling party’s favor…(More)”.

Mind the (Language) Gap: Mapping the Challenges of LLM Development in Low-Resource Language Contexts


White Paper by the Stanford Institute for Human-Centered AI (HAI), the Asia Foundation and the University of Pretoria: “…maps the LLM development landscape for low-resource languages, highlighting challenges, trade-offs, and strategies to increase investment; prioritize cross-disciplinary, community-driven development; and ensure fair data ownership…

  • Large language model (LLM) development suffers from a digital divide: Most major LLMs underperform for non-English—and especially low-resource—languages; are not attuned to relevant cultural contexts; and are not accessible in parts of the Global South.
  • Low-resource languages (such as Swahili or Burmese) face two crucial limitations: a scarcity of labeled and unlabeled language data and poor quality data that is not sufficiently representative of the languages and their sociocultural contexts.
  • To bridge these gaps, researchers and developers are exploring different technical approaches to developing LLMs that better perform for and represent low-resource languages but come with different trade-offs:
    • Massively multilingual models, developed primarily by large U.S.-based firms, aim to improve performance for more languages by including a wider range of (100-plus) languages in their training datasets.
    • Regional multilingual models, developed by academics, governments, and nonprofits in the Global South, use smaller training datasets made up of 10-20 low-resource languages to better cater to and represent a smaller group of languages and cultures.
    • Monolingual or monocultural models, developed by a variety of public and private actors, are trained on or fine-tuned for a single low-resource language and thus tailored to perform well for that language…(More)”

Artificial Intelligence and Big Data


Book edited by Frans L. Leeuw and Michael Bamberger: “…explores how Artificial Intelligence (AI) and Big Data contribute to the evaluation of the rule of law (covering legal arrangements, empirical legal research, law and technology, and international law), and social and economic development programs in both industrialized and developing countries. Issues of ethics and bias in the use of AI are also addressed and indicators of the growth of knowledge in the field are discussed.

Interdisciplinary and international in scope, and bringing together leading academics and practitioners from across the globe, the book explores the applications of AI and big data in Rule of Law and development evaluation, identifies differences in the approaches used in the two fields, and how each could learn from the approaches used in the other, as well as differences in the AI-related issues addressed in industrialized nations compared to those addressed in Africa and Asia.

Artificial Intelligence and Big Data is an essential read for researchers, academics and students working in the fields of Rule of Law and Development, and researchers in institutions working on new applications in AI will all benefit from the book’s practical insights…(More)”.

UAE set to use AI to write laws in world first


Article by Chloe Cornish: “The United Arab Emirates aims to use AI to help write new legislation and review and amend existing laws, in the Gulf state’s most radical attempt to harness a technology into which it has poured billions.

The plan for what state media called “AI-driven regulation” goes further than anything seen elsewhere, AI researchers said, while noting that details were scant. Other governments are trying to use AI to become more efficient, from summarising bills to improving public service delivery, but not to actively suggest changes to current laws by crunching government and legal data.

“This new legislative system, powered by artificial intelligence, will change how we create laws, making the process faster and more precise,” said Sheikh Mohammad bin Rashid Al Maktoum, the Dubai ruler and UAE vice-president, quoted by state media.

Ministers last week approved the creation of a new cabinet unit, the Regulatory Intelligence Office, to oversee the legislative AI push. 

Rony Medaglia, a professor at Copenhagen Business School, said the UAE appeared to have an “underlying ambition to basically turn AI into some sort of co-legislator”, and described the plan as “very bold”.

Abu Dhabi has bet heavily on AI and last year opened a dedicated investment vehicle, MGX, which has backed a $30bn BlackRock AI-infrastructure fund among other investments. MGX has also added an AI observer to its own board.

The UAE plans to use AI to track how laws affect the country’s population and economy by creating a massive database of federal and local laws, together with public sector data such as court judgments and government services.

The AI will “regularly suggest updates to our legislation,” Sheikh Mohammad said, according to state media. The government expects AI to speed up lawmaking by 70 per cent, according to the cabinet meeting readout…(More)”