The Impact of Open: Keeping you healthy


of Sunlight: “In healthcare, the goal-set shared widely throughout the field is known as “the Triple Aim”: improving individual experience of care, improving population health, and reducing the cost of care. Across the wide array of initiatives undertaken by health care data users, the great majority seem to fall within the scope of at least one aspect of the Triple Aim. Below is a set of examples that reveal how data — both open and not — is being used to achieve its elements.

The use of open data to reduce costs:

The use of open data to improve quality of care:

  • Using open data on a substantial series of individual hospital quality measures, CMS created a hospital comparison tool that allows consumers to compare average quality of care outcomes across their local hospitals.

  • Non-profit organizations survey hospitals and have used this data to provide another national measure of hospital quality that consumers can use to select a high-quality hospital.

  • In New York state, widely-shared data on cardiac surgery outcomes associated with individual providers has led to improved outcomes and better understanding of successful techniques.

  • In the UK, the National Health Service is actively working towards defining concrete metrics to evaluate how the system as a whole is moving towards improved quality. …

  • The broad cultural shift towards data-sharing in healthcare appears to have facilitated additional secured sharing in order to achieve the joint goal of improving healthcare quality and effectiveness. The current effort to securely network of millions of patient data records through the federal PCORI system has the potential to advance understanding of disease treatment at an unprecedented pace.

  • Through third-party tools, people are able to use the products of aggregated patient data in order to begin diagnosing their own symptoms more accurately, giving them a head start in understanding how to optimize their visit to a provider.

The use of open data to improve population health:

  • Out of the three elements of the triple aim, population health may have the longest and deepest relationship with open data. Public datasets like those collected by the Centers for Disease Control and the US Census have for decades been used to monitor disease prevalence, verify access to health insurance, and track mortality and morbidity statistics.

  • Population health improvement has been a major focus for newer developments as well. Health data has been a regular feature in tech efforts to improve the ways that governments — including local health departments — reach their constituencies. The use of data in new communication tools improves population health by increasing population awareness of local health trends and disease prevention opportunities. Two examples of this work in action include the Chicago Health Atlas, which combines health data and healthcare consumer problem-solving, and Philadelphia’s map interface to city data about available flu vaccines.

One final observation for open data advocates to take from health data concerns the way that the sector encourages the two-way information flow: it embraces the notion that data users can also be data producers. Open data ecosystems are properly characterized by multi-directional relationships among governmental and non-governmental actors, with opportunities for feedback, correction and augmentation of open datasets. That this happens at the scale of health data is important and meaningful for open data advocates who can face push-back when they ask their governments to ingest externally-generated data….”

Opening Public Transportation Data in Germany


Thesis by Kaufmann, Stefan: “Open data has been recognized as a valuable resource, and public institutions have taken to publishing their data under open licenses, also in Germany. However, German public transit agencies are still reluctant to publish their schedules as open data. Also, two widely used data exchange formats used in German transit planning are proprietary, with no documentation publicly available. Through this work, one of the proprietary formats was reverse-engineered, and a transformation process into the open GTFS schedule format was developed. This process allowed a partnering transit operator to publish their schedule as open data. Also, through a survey taken with German transit authorities and operators, the prevalence of transit data exchange formats, and reservations concerning open transit data were evaluated. The survey brought a series of issues to light which serve as obstacles for opening up transit data. Addressing the issues found through this work, and partnering with open-minded transit authorities to further develop transit data publishing processes can serve as a foundation for wider adoption of publishing open transit data in Germany”

Towards a comparative science of cities: using mobile traffic records in New York, London and Hong Kong


Book chapter by S. Grauwin, S. Sobolevsky, S. Moritz, I. Gódor, C. Ratti, to be published in “Computational Approaches for Urban Environments” (Springer Ed.), October 2014: “This chapter examines the possibility to analyze and compare human activities in an urban environment based on the detection of mobile phone usage patterns. Thanks to an unprecedented collection of counter data recording the number of calls, SMS, and data transfers resolved both in time and space, we confirm the connection between temporal activity profile and land usage in three global cities: New York, London and Hong Kong. By comparing whole cities typical patterns, we provide insights on how cultural, technological and economical factors shape human dynamics. At a more local scale, we use clustering analysis to identify locations with similar patterns within a city. Our research reveals a universal structure of cities, with core financial centers all sharing similar activity patterns and commercial or residential areas with more city-specific patterns. These findings hint that as the economy becomes more global, common patterns emerge in business areas of different cities across the globe, while the impact of local conditions still remains recognizable on the level of routine people activity.”

Every citizen a scientist? An EU project tries to change the face of research


Project News from the European Commission:  “SOCIENTIZE builds on the concept of ‘Citizen Science’, which sees thousands of volunteers, teachers, researchers and developers put together their skills, time and resources to advance scientific research. Thanks to open source tools developed under the project, participants can help scientists collect data – which will then be analysed by professional researchers – or even perform tasks that require human cognition or intelligence like image classification or analysis.

Every citizen can be a scientist
The project helps usher in new advances in everything from astronomy to social science.
‘One breakthrough is our increased capacity to reproduce, analyse and understand complex issues thanks to the engagement of large groups of volunteers,’ says Mr Fermin Serrano Sanz, researcher at the University of Zaragoza and Project Coordinator of SOCIENTIZE. ‘And everyone can be a neuron in our digitally-enabled brain.’
But how can ordinary citizens help with such extraordinary science? The key, says Mr Serrano Sanz, is in harnessing the efforts of thousands of volunteers to collect and classify data. ‘We are already gathering huge amounts of user-generated data from the participants using their mobile phones and surrounding knowledge,’ he says.
For example, the experiment ‘SavingEnergy@Home’ asks users to submit data about the temperatures in their homes and neighbourhoods in order to build up a clearer picture of temperatures in cities across the EU, while in Spain, GripeNet.es asks citizens to report when they catch the flu in order to monitor outbreaks and predict possible epidemics.
Many Hands Make Light Work
But citizens can also help analyse data. Even the most advanced computers are not very good at recognising things like sun spots or cells, whereas people can tell the difference between living and dying cells very easily, given only a short training.
The SOCIENTIZE projects ‘Sun4All’ and ‘Cell Spotting’ ask volunteers to label images of solar activity and cancer cells from an application on their phone or computer. With Cell Spotting, for instance, participants can observe cell cultures being studied with a microscope in order to determine their state and the effectiveness of medicines. Analysing this data would take years and cost hundreds of thousands of euros if left to a small team of scientists – but with thousands of volunteers helping the effort, researchers can make important breakthroughs quickly and more cheaply than ever before.
But in addition to bringing citizens closer to science, SOCIENTIZE also brings science closer to citizens. On 12-14 June, the project participated in the SONAR festival with ‘A Collective Music Experiment’ (CME). ‘Two hundred people joined professional DJs and created musical patterns using a web tool; participants shared their creations and re-used other parts in real time. The activity in the festival also included a live show of RdeRumba and Mercadal playing amateurs rhythms’ Mr. Serrano Sanz explains.
The experiment – which will be presented in a mini-documentary to raise awareness about citizen science – is expected to help understand other innovation processes observed in emergent social, technological, economic or political transformations. ‘This kind of event brings together a really diverse set of participants. The diversity does not only enrich the data; it improves the dialogue between professionals and volunteers. As a result, we see some new and innovative approaches to research.’
The EUR 0.7 million project brings together 6 partners from 4 countries: Spain (University of Zaragoza and TECNARA), Portugal (Museu da Ciência-Coimbra, MUSC ; Universidade de Coimbra),  Austria (Zentrum für Soziale Innovation) and Brazil (Universidade Federal de Campina Grande, UFCG).
SOCIENTIZE will end in October 2104 after bringing together 12000 citizens in different phases of research activities for 24 months.”

Index: The Networked Public


The Living Library Index – inspired by the Harper’s Index – provides important statistics and highlights global trends in governance innovation. This installment focuses on the networked public and was originally published in 2014.

Global Overview

  • The proportion of global population who use the Internet in 2013: 38.8%, up 3 percentage points from 2012
  • Increase in average global broadband speeds from 2012 to 2013: 17%
  • Percent of internet users surveyed globally that access the internet at least once a day in 2012: 96
  • Hours spent online in 2012 each month across the globe: 35 billion
  • Country with the highest online population, as a percent of total population in 2012: United Kingdom (85%)
  • Country with the lowest online population, as a percent of total population in 2012: India (8%)
  • Trend with the highest growth rate in 2012: Location-based services (27%)
  • Years to reach 50 million users: telephone (75), radio (38), TV (13), internet (4)

Growth Rates in 2014

  • Rate at which the total number of Internet users is growing: less than 10% a year
  • Worldwide annual smartphone growth: 20%
  • Tablet growth: 52%
  • Mobile phone growth: 81%
  • Percentage of all mobile users who are now smartphone users: 30%
  • Amount of all web usage in 2013 accounted for by mobile: 14%
  • Amount of all web usage in 2014 accounted for by mobile: 25%
  • Percentage of money spent on mobile used for app purchases: 68%
  • Growth of BitCoin wallet between 2013 and 2014: 8 times increase
  • Number of listings on AirBnB in 2014: 550k, 83% growth year on year
  • How many buyers are on Alibaba in 2014: 231MM buyers, 44% growth year on year

Social Media

  • Number of Whatsapp messages on average sent per day: 50 billion
  • Number sent per day on Snapchat: 1.2 billion
  • How many restaurants are registered on GrubHub in 2014: 29,000
  • Amount the sale of digital songs fell in 2013: 6%
  • How much song streaming grew in 2013: 32%
  • Number of photos uploaded and shared every day on Flickr, Snapchat, Instagram, Facebook and Whatsapp combined in 2014: 1.8 billion
  • How many online adults in the U.S. use a social networking site of some kind: 73%
  • Those who use multiple social networking sites: 42%
  • Dominant social networking platform: Facebook, with 71% of online adults
  • Number of Facebook users in 2004, its founding year: 1 million
  • Number of monthly active users on Facebook in September 2013: 1.19 billion, an 18% increase year-over-year
  • How many Facebook users log in to the site daily: 63%
  • Instagram users who log into the service daily: 57%
  • Twitter users who are daily visitors: 46%
  • Number of photos uploaded to Facebook every minute: over 243,000, up 16% from 2012
  • How much of the global internet population is actively using Twitter every month: 21%
  • Number of tweets per minute: 350,000, up 250% from 2012
  • Fastest growing demographic on Twitter: 55-64 year age bracket, up 79% from 2012
  • Fastest growing demographic on Facebook: 45-54 year age bracket, up 46% from 2012
  • How many LinkedIn accounts are created every minute: 120, up 20% from 2012
  • The number of Google searches in 2013: 3.5 million, up 75% from 2012
  • Percent of internet users surveyed globally that use social media in 2012: 90
  • Percent of internet users surveyed globally that use social media daily: 60
  • Time spent social networking, the most popular online activity: 22%, followed by searches (21%), reading content (20%), and emails/communication (19%)
  • The average age at which a child acquires an online presence through their parents in 10 mostly Western countries: six months
  • Number of children in those countries who have a digital footprint by age 2: 81%
  • How many new American marriages between 2005-2012 began by meeting online, according to a nationally representative study: more than one-third 
  • How many of the world’s 505 leaders are on Twitter: 3/4
  • Combined Twitter followers: of 505 world leaders: 106 million
  • Combined Twitter followers of Justin Bieber, Katy Perry, and Lady Gaga: 122 million
  • How many times all Wikipedias are viewed per month: nearly 22 billion times
  • How many hits per second: more than 8,000 
  • English Wikipedia’s share of total page views: 47%
  • Number of articles in the English Wikipedia in December 2013: over 4,395,320 
  • Platform that reaches more U.S. adults between ages 18-34 than any cable network: YouTube
  • Number of unique users who visit YouTube each month: more than 1 billion
  • How many hours of video are watched on YouTube each month: over 6 billion, 50% more than 2012
  • Proportion of YouTube traffic that comes from outside the U.S.: 80%
  • Most common activity online, based on an analysis of over 10 million web users: social media
  • People on Twitter who recommend products in their tweets: 53%
  • People who trust online recommendations from people they know: 90%

Mobile and the Internet of Things

  • Number of global smartphone users in 2013: 1.5 billion
  • Number of global mobile phone users in 2013: over 5 billion
  • Percent of U.S. adults that have a cell phone in 2013: 91
  • Number of which are a smartphone: almost two thirds
  • Mobile Facebook users in March 2013: 751 million, 54% increase since 2012
  • Growth rate of global mobile traffic as a percentage of global internet traffic as of May 2013: 15%, up from .9% in 2009
  • How many smartphone owners ages 18–44 “keep their phone with them for all but two hours of their waking day”: 79%
  • Those who reach for their smartphone immediately upon waking up: 62%
  • Those who couldn’t recall a time their phone wasn’t within reach or in the same room: 1 in 4
  • Facebook users who access the service via a mobile device: 73.44%
  • Those who are “mobile only”: 189 million
  • Amount of YouTube’s global watch time that is on mobile devices: almost 40%
  • Number of objects connected globally in the “internet of things” in 2012: 8.7 billion
  • Number of connected objects so far in 2013: over 10 billion
  • Years from tablet introduction for tables to surpass desktop PC and notebook shipments: less than 3 (over 55 million global units shipped in 2013, vs. 45 million notebooks and 35 million desktop PCs)
  • Number of wearable devices estimated to have been shipped worldwide in 2011: 14 million
  • Projected number of wearable devices in 2016: between 39-171 million
  • How much of the wearable technology market is in the healthcare and medical sector in 2012: 35.1%
  • How many devices in the wearable tech market are fitness or activity trackers: 61%
  • The value of the global wearable technology market in 2012: $750 million
  • The forecasted value of the market in 2018: $5.8 billion
  • How many Americans are aware of wearable tech devices in 2013: 52%
  • Devices that have the highest level of awareness: wearable fitness trackers,
  • Level of awareness for wearable fitness trackers amongst American consumers: 1 in 3 consumers
  • Value of digital fitness category in 2013: $330 million
  • How many American consumers surveyed are aware of smart glasses: 29%
  • Smart watch awareness amongst those surveyed: 36%

Access

  • How much of the developed world has mobile broadband subscriptions in 2013: 3/4
  • How much of the developing world has broadband subscription in 2013: 1/5
  • Percent of U.S. adults that had a laptop in 2012: 57
  • How many American adults did not use the internet at home, at work, or via mobile device in 2013: one in five
  • Amount President Obama initiated spending in 2009 in an effort to expand access: $7 billion
  • Number of Americans potentially shut off from jobs, government services, health care and education, among other opportunities due to digital inequality: 60 million
  • American adults with a high-speed broadband connection at home as of May 2013: 7 out of 10
  • Americans aged 18-29 vs. 65+ with a high-speed broadband connection at home as of May 2013: 80% vs. 43
  • American adults with college education (or more) vs. adults with no high school diploma that have a high-speed broadband connection at home as of May 2013: 89% vs. 37%
  • Percent of U.S. adults with college education (or more) that use the internet in 2011: 94
  • Those with no high school diploma that used the internet in 2011: 43
  • Percent of white American households that used the internet in 2013: 67
  • Black American households that used the internet in 2013: 57
  • States with lowest internet use rates in 2013: Mississippi, Alabama and Arkansas
  • How many American households have only wireless telephones as of the second half of 2012: nearly two in five
  • States with the highest prevalence of wireless-only adults according to predictive modeling estimates: Idaho (52.3%), Mississippi (49.4%), Arkansas (49%)
  • Those with the lowest prevalence of wireless-only adults: New Jersey (19.4%), Connecticut (20.6%), Delaware (23.3%) and New York (23.5%)

Sources

Transparency, legitimacy and trust


John Kamensky at Federal Times: “The Open Government movement has captured the imagination of many around the world as a way of increasing transparency, participation, and accountability. In the US, many of the federal, state, and local Open Government initiatives have been demonstrated to achieve positive results for citizens here and abroad. In fact, the White House’s science advisors released a refreshed Open Government plan in early June.
However, a recent study in Sweden says the benefits of transparency may vary, and may have little impact on citizens’ perception of legitimacy and trust in government. This research suggests important lessons on how public managers should approach the design of transparency strategies, and how they work in various conditions.
Jenny de Fine Licht, a scholar at the University of Gothenberg in Sweden, offers a more nuanced view of the influence of transparency in political decision making on public legitimacy and trust, in a paper that appears in the current issue of “Public Administration Review.” Her research challenges the assumption of many in the Open Government movement that greater transparency necessarily leads to greater citizen trust in government.
Her conclusion, based on an experiment involving over 1,000 participants, was that the type and degree of transparency “has different effects in different policy areas.” She found that “transparency is less effective in policy decisions that involve trade-offs related to questions of human life and death or well-being.”

The background

Licht says there are some policy decisions that involve what are called “taboo tradeoffs.” A taboo tradeoff, for example, would be making budget tradeoffs in policy areas such as health care and environmental quality, where human life or well-being is at stake. In cases where more money is an implicit solution, the author notes, “increased transparency in these policy areas might provoke feeling of taboo, and, accordingly, decreased perceived legitimacy.”
Other scholars, such as Harvard’s Jane Mansbridge,contend that “full transparency may not always be the best practice in policy making.” Full transparency in decision-making processes would include, for example, open appropriation committee meetings. Instead, she recommends “transparency in rationale – in procedures, information, reasons, and the facts on which the reasons are based.” That is, provide a full explanation after-the-fact.
Licht tested the hypothesis that full transparency of the decision-making process vs. partial transparency via providing after-the-fact rationales for decisions may create different results, depending on the policy arena involved…
Open Government advocates have generally assumed that full and open transparency is always better. Licht’s conclusion is that “greater transparency” does not necessarily increase citizen legitimacy and trust. Instead, the strategy of encouraging a high degree of transparency requires a more nuanced application in its use. While the she cautions about generalizing from her experiment, the potential implications for government decision-makers could be significant.
To date, many of the various Open Government initiatives across the country have assumed a “one size fits all” approach, across the board. Licht’s conclusions, however, help explain why the results of various initiatives have been divergent in terms of citizen acceptance of open decision processes.
Her experiment seems to suggest that citizen engagement is more likely to create a greater citizen sense of legitimacy and trust in areas involving “routine” decisions, such as parks, recreation, and library services. But that “taboo” decisions in policy areas involving tradeoffs of human life, safety, and well-being may not necessarily result in greater trust as a result of the use of full and open transparency of decision-making processes.
While she says that transparency – whether full or partial – is always better than no transparency, her experiment at least shows that policy makers will, at a minimum, know that the end result may not be greater legitimacy and trust. In any case, her research should engender a more nuanced conversation among Open Government advocates at all levels of government. In order to increase citizens’ perceptions of legitimacy and trust in government, it will take more than just advocating for Open Data!”

App pays commuters to take routes that ease congestion


Springwise: “Congestion at peak hours is a major problem in the world’s busiest city centres. We’ve recently seen Gothenburg in Sweden offering free bicycles to ease the burden on public transport services, but now a new app is looking to take a different approach to the same problem. Urban Engines uses algorithms to help cities determine key congestion choke points and times, and can then reward commuters for avoiding them.
The Urban Engines system is based on commuters using the smart commuter cards already found in many major cities. The company tracks journeys made with those commuter cards, and uses that data to identify main areas of congestion, and at what times the congestion occurs. The system has already been employed in Washington, D.C, and Sao Paulo, Brazil, helping provide valuable data for work with city planners.
It’s in Singapore, however, where the most interesting work has been achieved so far. There, commuters who have signed up and registered their commuter cards can earn rewards when they travel. They will earn one point for every kilometre travelled during peak hours, or triple that when travelling off-peak. The points earned can then be converted into discounts on future journeys, or put towards an in-app raffle game, where they have the opportunity to win sums of money. Urban Engines claim there’s been a 7 to 13 percent reduction in journeys made during peak hours, with 200,000 commuters taking part.
The company is based on an original experiment carried out in Bangalore. The rewards program there, carried out among 20,000 employees of the Indian company Infosys, lead to 17 percent of traffic shifting to off-peak travel times in six months. A similarly successful experiment has also been carried out on the Stanford University campus, and the plan is to now expand to other major cities…”

Poetica


at TechnologyCrunch: “The ability to collaborate on the draft of a document is actually fiendishly tedious online. Many people might be used to Microsoft Word ‘Track Changes’ (ugh) despite the fact it looks awful and takes some getting used to. Nor does Google Docs really create a collaboration experience that mere mortals can get into. Step in Poetica, a brand new startup co-founded by Blaine Cook, formerly Twitter’s founding lead engineer.
Cook has now raised an angel round of funding for the London-based company which is hoping to change how teams create, share and edit work on the web, across any devices and mediums.
Poetica, which opens its doors to new signups today, is a browser-based editor and Chrome extension that portrays a more traditional view of text collaboration – in the same way you might see someone scribble on a piece of paper….
Cook says the goal is to “bring rich collaboration tools based on cutting-edge technology and design to everyone” who wants to communicate online. In other words, they are going for a fairly big play here. And he reckons he can do it from London, over the Valley, where he worked at Twitter: “London has an incredible community of brilliant software engineers and designers, and a growing and supportive investor base.”

Selected Readings on Crowdsourcing Tasks and Peer Production


The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of crowdsourcing was originally published in 2014.

Technological advances are creating a new paradigm by which institutions and organizations are increasingly outsourcing tasks to an open community, allocating specific needs to a flexible, willing and dispersed workforce. “Microtasking” platforms like Amazon’s Mechanical Turk are a burgeoning source of income for individuals who contribute their time, skills and knowledge on a per-task basis. In parallel, citizen science projects – task-based initiatives in which citizens of any background can help contribute to scientific research – like Galaxy Zoo are demonstrating the ability of lay and expert citizens alike to make small, useful contributions to aid large, complex undertakings. As governing institutions seek to do more with less, looking to the success of citizen science and microtasking initiatives could provide a blueprint for engaging citizens to help accomplish difficult, time-consuming objectives at little cost. Moreover, the incredible success of peer-production projects – best exemplified by Wikipedia – instills optimism regarding the public’s willingness and ability to complete relatively small tasks that feed into a greater whole and benefit the public good. You can learn more about this new wave of “collective intelligence” by following the MIT Center for Collective Intelligence and their annual Collective Intelligence Conference.

Selected Reading List (in alphabetical order)

Annotated Selected Reading List (in alphabetical order)

Benkler, Yochai. The Wealth of Networks: How Social Production Transforms Markets and Freedom. Yale University Press, 2006. http://bit.ly/1aaU7Yb.

  • In this book, Benkler “describes how patterns of information, knowledge, and cultural production are changing – and shows that the way information and knowledge are made available can either limit or enlarge the ways people can create and express themselves.”
  • In his discussion on Wikipedia – one of many paradigmatic examples of people collaborating without financial reward – he calls attention to the notable ongoing cooperation taking place among a diversity of individuals. He argues that, “The important point is that Wikipedia requires not only mechanical cooperation among people, but a commitment to a particular style of writing and describing concepts that is far from intuitive or natural to people. It requires self-discipline. It enforces the behavior it requires primarily through appeal to the common enterprise that the participants are engaged in…”

Brabham, Daren C. Using Crowdsourcing in Government. Collaborating Across Boundaries Series. IBM Center for The Business of Government, 2013. http://bit.ly/17gzBTA.

  • In this report, Brabham categorizes government crowdsourcing cases into a “four-part, problem-based typology, encouraging government leaders and public administrators to consider these open problem-solving techniques as a way to engage the public and tackle difficult policy and administrative tasks more effectively and efficiently using online communities.”
  • The proposed four-part typology describes the following types of crowdsourcing in government:
    • Knowledge Discovery and Management
    • Distributed Human Intelligence Tasking
    • Broadcast Search
    • Peer-Vetted Creative Production
  • In his discussion on Distributed Human Intelligence Tasking, Brabham argues that Amazon’s Mechanical Turk and other microtasking platforms could be useful in a number of governance scenarios, including:
    • Governments and scholars transcribing historical document scans
    • Public health departments translating health campaign materials into foreign languages to benefit constituents who do not speak the native language
    • Governments translating tax documents, school enrollment and immunization brochures, and other important materials into minority languages
    • Helping governments predict citizens’ behavior, “such as for predicting their use of public transit or other services or for predicting behaviors that could inform public health practitioners and environmental policy makers”

Boudreau, Kevin J., Patrick Gaule, Karim Lakhani, Christoph Reidl, Anita Williams Woolley. “From Crowds to Collaborators: Initiating Effort & Catalyzing Interactions Among Online Creative Workers.” Harvard Business School Technology & Operations Mgt. Unit Working Paper No. 14-060. January 23, 2014. https://bit.ly/2QVmGUu.

  • In this working paper, the authors explore the “conditions necessary for eliciting effort from those affecting the quality of interdependent teamwork” and “consider the the role of incentives versus social processes in catalyzing collaboration.”
  • The paper’s findings are based on an experiment involving 260 individuals randomly assigned to 52 teams working toward solutions to a complex problem.
  • The authors determined the level of effort in such collaborative undertakings are sensitive to cash incentives. However, collaboration among teams was driven more by the active participation of teammates, rather than any monetary reward.

Franzoni, Chiara, and Henry Sauermann. “Crowd Science: The Organization of Scientific Research in Open Collaborative Projects.” Research Policy (August 14, 2013). http://bit.ly/HihFyj.

  • In this paper, the authors explore the concept of crowd science, which they define based on two important features: “participation in a project is open to a wide base of potential contributors, and intermediate inputs such as data or problem solving algorithms are made openly available.” The rationale for their study and conceptual framework is the “growing attention from the scientific community, but also policy makers, funding agencies and managers who seek to evaluate its potential benefits and challenges. Based on the experiences of early crowd science projects, the opportunities are considerable.”
  • Based on the study of a number of crowd science projects – including governance-related initiatives like Patients Like Me – the authors identify a number of potential benefits in the following categories:
    • Knowledge-related benefits
    • Benefits from open participation
    • Benefits from the open disclosure of intermediate inputs
    • Motivational benefits
  • The authors also identify a number of challenges:
    • Organizational challenges
    • Matching projects and people
    • Division of labor and integration of contributions
    • Project leadership
    • Motivational challenges
    • Sustaining contributor involvement
    • Supporting a broader set of motivations
    • Reconciling conflicting motivations

Kittur, Aniket, Ed H. Chi, and Bongwon Suh. “Crowdsourcing User Studies with Mechanical Turk.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 453–456. CHI ’08. New York, NY, USA: ACM, 2008. http://bit.ly/1a3Op48.

  • In this paper, the authors examine “[m]icro-task markets, such as Amazon’s Mechanical Turk, [which] offer a potential paradigm for engaging a large number of users for low time and monetary costs. [They] investigate the utility of a micro-task market for collecting user measurements, and discuss design considerations for developing remote micro user evaluation tasks.”
  • The authors conclude that in addition to providing a means for crowdsourcing small, clearly defined, often non-skill-intensive tasks, “Micro-task markets such as Amazon’s Mechanical Turk are promising platforms for conducting a variety of user study tasks, ranging from surveys to rapid prototyping to quantitative measures. Hundreds of users can be recruited for highly interactive tasks for marginal costs within a timeframe of days or even minutes. However, special care must be taken in the design of the task, especially for user measurements that are subjective or qualitative.”

Kittur, Aniket, Jeffrey V. Nickerson, Michael S. Bernstein, Elizabeth M. Gerber, Aaron Shaw, John Zimmerman, Matthew Lease, and John J. Horton. “The Future of Crowd Work.” In 16th ACM Conference on Computer Supported Cooperative Work (CSCW 2013), 2012. http://bit.ly/1c1GJD3.

  • In this paper, the authors discuss paid crowd work, which “offers remarkable opportunities for improving productivity, social mobility, and the global economy by engaging a geographically distributed workforce to complete complex tasks on demand and at scale.” However, they caution that, “it is also possible that crowd work will fail to achieve its potential, focusing on assembly-line piecework.”
  • The authors argue that seven key challenges must be met to ensure that crowd work processes evolve and reach their full potential:
    • Designing workflows
    • Assigning tasks
    • Supporting hierarchical structure
    • Enabling real-time crowd work
    • Supporting synchronous collaboration
    • Controlling quality

Madison, Michael J. “Commons at the Intersection of Peer Production, Citizen Science, and Big Data: Galaxy Zoo.” In Convening Cultural Commons, 2013. http://bit.ly/1ih9Xzm.

  • This paper explores a “case of commons governance grounded in research in modern astronomy. The case, Galaxy Zoo, is a leading example of at least three different contemporary phenomena. In the first place, Galaxy Zoo is a global citizen science project, in which volunteer non-scientists have been recruited to participate in large-scale data analysis on the Internet. In the second place, Galaxy Zoo is a highly successful example of peer production, some times known as crowdsourcing…In the third place, is a highly visible example of data-intensive science, sometimes referred to as e-science or Big Data science, by which scientific researchers develop methods to grapple with the massive volumes of digital data now available to them via modern sensing and imaging technologies.”
  • Madison concludes that the success of Galaxy Zoo has not been the result of the “character of its information resources (scientific data) and rules regarding their usage,” but rather, the fact that the “community was guided from the outset by a vision of a specific organizational solution to a specific research problem in astronomy, initiated and governed, over time, by professional astronomers in collaboration with their expanding universe of volunteers.”

Malone, Thomas W., Robert Laubacher and Chrysanthos Dellarocas. “Harnessing Crowds: Mapping the Genome of Collective Intelligence.” MIT Sloan Research Paper. February 3, 2009. https://bit.ly/2SPjxTP.

  • In this article, the authors describe and map the phenomenon of collective intelligence – also referred to as “radical decentralization, crowd-sourcing, wisdom of crowds, peer production, and wikinomics – which they broadly define as “groups of individuals doing things collectively that seem intelligent.”
  • The article is derived from the authors’ work at MIT’s Center for Collective Intelligence, where they gathered nearly 250 examples of Web-enabled collective intelligence. To map the building blocks or “genes” of collective intelligence, the authors used two pairs of related questions:
    • Who is performing the task? Why are they doing it?
    • What is being accomplished? How is it being done?
  • The authors concede that much work remains to be done “to identify all the different genes for collective intelligence, the conditions under which these genes are useful, and the constraints governing how they can be combined,” but they believe that their framework provides a useful start and gives managers and other institutional decisionmakers looking to take advantage of collective intelligence activities the ability to “systematically consider many possible combinations of answers to questions about Who, Why, What, and How.”

Mulgan, Geoff. “True Collective Intelligence? A Sketch of a Possible New Field.” Philosophy & Technology 27, no. 1. March 2014. http://bit.ly/1p3YSdd.

  • In this paper, Mulgan explores the concept of a collective intelligence, a “much talked about but…very underdeveloped” field.
  • With a particular focus on health knowledge, Mulgan “sets out some of the potential theoretical building blocks, suggests an experimental and research agenda, shows how it could be analysed within an organisation or business sector and points to possible intellectual barriers to progress.”
  • He concludes that the “central message that comes from observing real intelligence is that intelligence has to be for something,” and that “turning this simple insight – the stuff of so many science fiction stories – into new theories, new technologies and new applications looks set to be one of the most exciting prospects of the next few years and may help give shape to a new discipline that helps us to be collectively intelligent about our own collective intelligence.”

Sauermann, Henry and Chiara Franzoni. “Participation Dynamics in Crowd-Based Knowledge Production: The Scope and Sustainability of Interest-Based Motivation.” SSRN Working Papers Series. November 28, 2013. http://bit.ly/1o6YB7f.

  • In this paper, Sauremann and Franzoni explore the issue of interest-based motivation in crowd-based knowledge production – in particular the use of the crowd science platform Zooniverse – by drawing on “research in psychology to discuss important static and dynamic features of interest and deriv[ing] a number of research questions.”
  • The authors find that interest-based motivation is often tied to a “particular object (e.g., task, project, topic)” not based on a “general trait of the person or a general characteristic of the object.” As such, they find that “most members of the installed base of users on the platform do not sign up for multiple projects, and most of those who try out a project do not return.”
  • They conclude that “interest can be a powerful motivator of individuals’ contributions to crowd-based knowledge production…However, both the scope and sustainability of this interest appear to be rather limited for the large majority of contributors…At the same time, some individuals show a strong and more enduring interest to participate both within and across projects, and these contributors are ultimately responsible for much of what crowd science projects are able to accomplish.”

Schmitt-Sands, Catherine E. and Richard J. Smith. “Prospects for Online Crowdsourcing of Social Science Research Tasks: A Case Study Using Amazon Mechanical Turk.” SSRN Working Papers Series. January 9, 2014. http://bit.ly/1ugaYja.

  • In this paper, the authors describe an experiment involving the nascent use of Amazon’s Mechanical Turk as a social science research tool. “While researchers have used crowdsourcing to find research subjects or classify texts, [they] used Mechanical Turk to conduct a policy scan of local government websites.”
  • Schmitt-Sands and Smith found that “crowdsourcing worked well for conducting an online policy program and scan.” The microtasked workers were helpful in screening out local governments that either did not have websites or did not have the types of policies and services for which the researchers were looking. However, “if the task is complicated such that it requires ongoing supervision, then crowdsourcing is not the best solution.”

Shirky, Clay. Here Comes Everybody: The Power of Organizing Without Organizations. New York: Penguin Press, 2008. https://bit.ly/2QysNif.

  • In this book, Shirky explores our current era in which, “For the first time in history, the tools for cooperating on a global scale are not solely in the hands of governments or institutions. The spread of the Internet and mobile phones are changing how people come together and get things done.”
  • Discussing Wikipedia’s “spontaneous division of labor,” Shirky argues that the process is like, “the process is more like creating a coral reef, the sum of millions of individual actions, than creating a car. And the key to creating those individual actions is to hand as much freedom as possible to the average user.”

Silvertown, Jonathan. “A New Dawn for Citizen Science.” Trends in Ecology & Evolution 24, no. 9 (September 2009): 467–471. http://bit.ly/1iha6CR.

  • This article discusses the move from “Science for the people,” a slogan adopted by activists in the 1970s to “’Science by the people,’ which is “a more inclusive aim, and is becoming a distinctly 21st century phenomenon.”
  • Silvertown identifies three factors that are responsible for the explosion of activity in citizen science, each of which could be similarly related to the crowdsourcing of skills by governing institutions:
    • “First is the existence of easily available technical tools for disseminating information about products and gathering data from the public.
    • A second factor driving the growth of citizen science is the increasing realisation among professional scientists that the public represent a free source of labour, skills, computational power and even finance.
    • Third, citizen science is likely to benefit from the condition that research funders such as the National Science Foundation in the USA and the Natural Environment Research Council in the UK now impose upon every grantholder to undertake project-related science outreach. This is outreach as a form of public accountability.”

Szkuta, Katarzyna, Roberto Pizzicannella, David Osimo. “Collaborative approaches to public sector innovation: A scoping study.” Telecommunications Policy. 2014. http://bit.ly/1oBg9GY.

  • In this article, the authors explore cases where government collaboratively delivers online public services, with a focus on success factors and “incentives for services providers, citizens as users and public administration.”
  • The authors focus on six types of collaborative governance projects:
    • Services initiated by government built on government data;
    • Services initiated by government and making use of citizens’ data;
    • Services initiated by civil society built on open government data;
    • Collaborative e-government services; and
    • Services run by civil society and based on citizen data.
  • The cases explored “are all designed in the way that effectively harnesses the citizens’ potential. Services susceptible to collaboration are those that require computing efforts, i.e. many non-complicated tasks (e.g. citizen science projects – Zooniverse) or citizens’ free time in general (e.g. time banks). Those services also profit from unique citizens’ skills and their propensity to share their competencies.”

New Book on 25 Years of Participatory Budgeting


Tiago Peixoto at Democracy Spot: “A little while ago I mentioned the launch of the Portuguese version of the book organized by Nelson Dias, “Hope for Democracy: 25 Years of Participatory Budgeting Worldwide”.

The good news is that the English version is finally out. Here’s an excerpt from the introduction:

This book represents the effort  of more than forty authors and many other direct and indirect contributions that spread across different continents seek to provide an overview on the Participatory Budgeting (PB) in the World. They do so from different backgrounds. Some are researchers, others are consultants, and others are activists connected to several groups and social movements. The texts reflect this diversity of approaches and perspectives well, and we do not try to influence that.
(….)
The pages that follow are an invitation to a fascinating journey on the path of democratic innovation in very diverse cultural, political, social and administrative settings. From North America to Asia, Oceania to Europe, from Latin America to Africa, the reader will find many reasons to closely follow the proposals of the different authors.

The book can be downloaded here [PDF]. I had the pleasure of being one of the book’s contributors, co-authoring an article with Rafael Sampaio on the use of ICT in PB processes: “Electronic Participatory Budgeting: False Dilemmas and True Complexities” [PDF]...”