Automating public services


Report by Anna Dent: “…Public bodies, under financial stress and looking for effective solutions, are at risk of jumping on the automation bandwagon without critically assessing whether it’s actually appropriate for their needs, and whether the potential benefits outweigh the risks. To realise the benefits of automation and minimise problems for communities and public bodies themselves, a clear-eyed approach which really gets to grips with the risks is needed. 

The temptation to introduce automation to tackle complex social challenges is strong; they are often deep-rooted and expensive to deal with, and can have life-long implications for individuals and communities. But precisely because of their complex nature they are not the best fit for rules-based automated processes, which may fail to deliver what they set out to achieve. 

Bias is increasingly recognised as a critical challenge with automation in the public sector. Bias can be introduced through training data, and can occur when automated tools are disproportionately used on a particular community. In either case, the effectiveness of the tool or process is undermined, and citizens are at risk of discrimination, unfair targeting and exclusion from services. 

Automated tools and processes rely on huge amounts of data; in public services this will often mean personal information and data about us and our lives which we may or may not feel comfortable being used. Balancing everyone’s right to privacy with the desire for efficiency and better outcomes is rarely straightforward, and if done badly can lead to a breakdown in trust…(More)”.

AI mass surveillance at Paris Olympics


Article by Anne Toomey McKenna: “The 2024 Paris Olympics is drawing the eyes of the world as thousands of athletes and support personnel and hundreds of thousands of visitors from around the globe converge in France. It’s not just the eyes of the world that will be watching. Artificial intelligence systems will be watching, too.

Government and private companies will be using advanced AI tools and other surveillance tech to conduct pervasive and persistent surveillance before, during and after the Games. The Olympic world stage and international crowds pose increased security risks so significant that in recent years authorities and critics have described the Olympics as the “world’s largest security operations outside of war.”

The French government, hand in hand with the private tech sector, has harnessed that legitimate need for increased security as grounds to deploy technologically advanced surveillance and data gathering tools. Its surveillance plans to meet those risks, including controversial use of experimental AI video surveillance, are so extensive that the country had to change its laws to make the planned surveillance legal.

The plan goes beyond new AI video surveillance systems. According to news reports, the prime minister’s office has negotiated a provisional decree that is classified to permit the government to significantly ramp up traditional, surreptitious surveillance and information gathering tools for the duration of the Games. These include wiretapping; collecting geolocation, communications and computer data; and capturing greater amounts of visual and audio data…(More)”.

An Algorithm Told Police She Was Safe. Then Her Husband Killed Her.


Article by Adam Satariano and Roser Toll Pifarré: “Spain has become dependent on an algorithm to combat gender violence, with the software so woven into law enforcement that it is hard to know where its recommendations end and human decision-making begins. At its best, the system has helped police protect vulnerable women and, overall, has reduced the number of repeat attacks in domestic violence cases. But the reliance on VioGén has also resulted in victims, whose risk levels are miscalculated, getting attacked again — sometimes leading to fatal consequences.

Spain now has 92,000 active cases of gender violence victims who were evaluated by VioGén, with most of them — 83 percent — classified as facing little risk of being hurt by their abuser again. Yet roughly 8 percent of women who the algorithm found to be at negligible risk and 14 percent at low risk have reported being harmed again, according to Spain’s Interior Ministry, which oversees the system.

At least 247 women have also been killed by their current or former partner since 2007 after being assessed by VioGén, according to government figures. While that is a tiny fraction of gender violence cases, it points to the algorithm’s flaws. The New York Times found that in a judicial review of 98 of those homicides, 55 of the slain women were scored by VioGén as negligible or low risk for repeat abuse…(More)”.

What does a ‘mission-driven’ approach to government mean and how can it be delivered?


Report by the Institute for Government and Nesta: “… set out a recommended approach for how government could effectively organise itself to deliver missions. It should act as a guide for public servants at the start of a new administration that has pledged to do things differently.

Missions are designed to set bold visions for change, inspiring collaboration across the system and society to break down silos and work towards a common goal. They represent the ultimate purpose of the Government, and the story it aims to tell by the end of the Parliament.

To succeed, government will need to adopt three key roles: driving public service innovation, shaping markets and harnessing collective intelligence to improve decision-making. Achieving these missions will require strong foundations and well-recognised enablers of good government, pursued in a specific manner to bring about a cultural change in Whitehall…(More)”.

AI: a transformative force in maternal healthcare


Article by Afifa Waheed: “Artificial intelligence (AI) and robotics have enormous potential in healthcare and are quickly shifting the landscape – emerging as a transformative force. They offer a new dimension to the way healthcare professionals approach disease diagnosis, treatment and monitoring. AI is being used in healthcare to help diagnose patients, for drug discovery and development, to improve physician-patient communication, to transcribe voluminous medical documents, and to analyse genomics and genetics. Labs are conducting research work faster than ever before, work that otherwise would have taken decades without the assistance of AI. AI-driven research in life sciences has included applications looking to address broad-based areas, such as diabetes, cancer, chronic kidney disease and maternal health.

In addition to increasing the knowledge of access to postnatal and neonatal care, AI can predict the risk of adverse events in antenatal and postnatal women and their neonatal care. It can be trained to identify those at risk of adverse events, by using patients’ health information such as nutrition status, age, existing health conditions and lifestyle factors. 

AI can further be used to improve access to women located in rural areas with a lack of trained professionals – AI-enabled ultrasound can assist front-line workers with image interpretation for a comprehensive set of obstetrics measurements, increasing quality access to early foetal ultrasound scans. The use of AI assistants and chatbots can also improve pregnant mothers’ experience by helping them find available physicians, schedule appointments and even answer some patient questions…

Many healthcare professionals I have spoken to emphasised that pre-existing conditions such as high blood pressure that leads to preeclampsia, iron deficiency, cardiovascular disease, age-related issues for those over 35, various other existing health conditions, and failure in the progress of labour that might lead to Caesarean (C-section), could all cause maternal deaths. Training AI models to detect these diseases early on and accurately for women could prove to be beneficial. AI algorithms can leverage advanced algorithms, machine learning (ML) techniques, and predictive models to enhance decision-making, optimise healthcare delivery, and ultimately improve patient outcomes in foeto-maternal health…(More)”.

The Economic Case for Reimagining the State


Report by the Tony Blair Institute: “The new government will need to lean in to support the diffusion of AI-era tech across the economy by adopting a pro-innovation, pro-technology stance, as advocated by the Tony Blair Institute for Global Change in our paper Accelerating the Future: Industrial Strategy in the Era of AI.

AI-era tech can also transform public services, creating a smaller, lower-cost state that delivers better outcomes for citizens. New TBI analysis suggests:

  • Adoption of AI across the public-sector workforce could save around one-fifth of workforce time at a comparatively low cost. If the government chooses to bank these time savings and reduce the size of the workforce, this could result in annual net savings of £10 billion per year by the end of this Parliament and £34 billion per year by the end of the next – enough to pay for the entire defence budget.
  • AI-era tech also offers significant potential to improve the UK’s health services. We envisage a major expansion of the country’s preventative-health-care system, including: a digital health record for every citizen; improved access to health checks online, at home and on the high street; and a wider rollout of preventative treatments across the population. This programme could lead to the triple benefit of a healthier population, a healthier economy (with more people in work) and healthier public finances (since more workers mean more tax revenues). Even a narrow version of this programme – focused only on cardiovascular disease – could lead to 70,000 more people in work and generate net savings to the Exchequer worth £600 million by the end of this parliamentary term, and £1.2 billion by the end of the next. Much larger gains are possible – worth £6 billion per year by 2040 – if medical treatments continue to advance and the programme expands to cover a wider range of conditions, including obesity and cancer.
  • Introducing a digital ID could significantly improve the way that citizens interact with government, in terms of saving them time, easing access and creating a more personalised service. A digital ID could also generate a net gain of about £2 billion per year for the Exchequer by helping to reduce benefit fraud, improve the efficiency of tax-revenue collection and better target welfare payments in a crisis. Based on international experience, we think it is achievable for the government to implement a digital ID within three years and generate cumulative net savings of almost £4 billion during this Parliament, and nearly £10 billion during the next term.
  • AI could also lead to a 6 per cent boost in educational attainment by helping to improve the quality of teaching, save teacher time and improve the ability of students to absorb lesson content. These gains would take time to materialise but could eventually raise UK GDP by up to 6 per cent in the long run and create more than £30 billion in fiscal space per year.

The four public-sector use cases outlined above could create substantial fiscal savings for the new government worth £12 billion a year (0.4 per cent of GDP) by the end of this parliamentary term, £37 billion (1.3 per cent of GDP) by the end of the next, and more than £40 billion (1.5 per cent of GDP) by 2040…(More)”.

Citizen engagement


European Union Report: “…considers how to approach citizen engagement for the EU missions. Engagement and social dialogue should aim to ensure that innovation is human-centred and that missions maintain wide public legitimacy. But citizen engagement is complex and significantly changes the traditional responsibilities of the research and innovation community and calls for new capabilities. This report provides insights to build these capabilities and explores effective ways to help citizens understand their role within the EU missions, showing how to engage them throughout the various stages of implementation. The report considers both the challenges and administrative burdens of citizen engagement and sets out how to overcome them, as well as demonstrated the wider opportunity of “double additionality” where citizen engagement methods serve to fundamentally transform an entire research and innovation portfolio…(More)”.

Exploring Digital Biomarkers for Depression Using Mobile Technology


Paper by Yuezhou Zhang et al: “With the advent of ubiquitous sensors and mobile technologies, wearables and smartphones offer a cost-effective means for monitoring mental health conditions, particularly depression. These devices enable the continuous collection of behavioral data, providing novel insights into the daily manifestations of depressive symptoms.

We found several significant links between depression severity and various behavioral biomarkers: elevated depression levels were associated with diminished sleep quality (assessed through Fitbit metrics), reduced sociability (approximated by Bluetooth), decreased levels of physical activity (quantified by step counts and GPS data), a slower cadence of daily walking (captured by smartphone accelerometers), and disturbances in circadian rhythms (analyzed across various data streams).
Leveraging digital biomarkers for assessing and continuously monitoring depression introduces a new paradigm in early detection and development of customized intervention strategies. Findings from these studies not only enhance our comprehension of depression in real-world settings but also underscore the potential of mobile technologies in the prevention and management of mental health issues…(More)”

Designing an Effective Governance Model for Data Collaboratives


Paper by Federico Bartolomucci & Francesco Leoni: “Data Collaboratives have gained traction as interorganizational partnerships centered on data exchange. They enhance the collective capacity of responding to contemporary societal challenges using data, while also providing participating organizations with innovation capabilities and reputational benefits. Unfortunately, data collaboratives often fail to advance beyond the pilot stage and are therefore limited in their capacity to deliver systemic change. The governance setting adopted by a data collaborative affects how it acts over the short and long term. We present a governance design model to develop context-dependent data collaboratives. Practitioners can use the proposed model and list of key reflective questions to evaluate the critical aspects of designing a governance model for their data collaboratives…(More)”.