Our Infant Information Revolution


Joseph Nye at Project Syndicate: “…When people are overwhelmed by the volume of information confronting them, it is hard to know what to focus on. Attention, not information, becomes the scarce resource. The soft power of attraction becomes an even more vital power resource than in the past, but so does the hard, sharp power of information warfare. And as reputation becomes more vital, political struggles over the creation and destruction of credibility multiply. Information that appears to be propaganda may not only be scorned, but may also prove counterproductive if it undermines a country’s reputation for credibility.

During the Iraq War, for example, the treatment of prisoners at Abu Ghraib and Guantanamo Bay in a manner inconsistent with America’s declared values led to perceptions of hypocrisy that could not be reversed by broadcasting images of Muslims living well in America. Similarly, President Donald Trump’s tweets that prove to be demonstrably false undercut American credibility and reduce its soft power.

The effectiveness of public diplomacy is judged by the number of minds changed (as measured by interviews or polls), not dollars spent. It is interesting to note that polls and the Portland index of the Soft Power 30show a decline in American soft power since the beginning of the Trump administration. Tweets can help to set the global agenda, but they do not produce soft power if they are not credible.

Now the rapidly advancing technology of artificial intelligence or machine learning is accelerating all of these processes. Robotic messages are often difficult to detect. But it remains to be seen whether credibility and a compelling narrative can be fully automated….(More)”.

On Preferring A to B, While Also Preferring B to A


Paper by Cass R. Sunstein: “In important contexts, people prefer option A to option B when they evaluate the two separately, but prefer option B to option A when they evaluate the two jointly. In consumer behavior, politics, and law, such preference reversals present serious puzzles about rationality and behavioral biases.

They are often a product of the pervasive problem of “evaluability.” Some important characteristics of options are difficult or impossible to assess in separate evaluation, and hence choosers disregard or downplay them; those characteristics are much easier to assess in joint evaluation, where they might be decisive. But in joint evaluation, certain characteristics of options may receive excessive weight, because they do not much affect people’s actual experience or because the particular contrast between joint options distorts people’s judgments. In joint as well as separate evaluation, people are subject to manipulation, though for different reasons.

It follows that neither mode of evaluation is reliable. The appropriate approach will vary depending on the goal of the task – increasing consumer welfare, preventing discrimination, achieving optimal deterrence, or something else. Under appropriate circumstances, global evaluation would be much better, but it is often not feasible. These conclusions bear on preference reversals in law and policy, where joint evaluation is often better, but where separate evaluation might ensure that certain characteristics or features of situations do not receive excessive weight…(More)”.

Technology and satellite companies open up a world of data


Gabriel Popkin at Nature: “In the past few years, technology and satellite companies’ offerings to scientists have increased dramatically. Thousands of researchers now use high-resolution data from commercial satellites for their work. Thousands more use cloud-computing resources provided by big Internet companies to crunch data sets that would overwhelm most university computing clusters. Researchers use the new capabilities to track and visualize forest and coral-reef loss; monitor farm crops to boost yields; and predict glacier melt and disease outbreaks. Often, they are analysing much larger areas than has ever been possible — sometimes even encompassing the entire globe. Such studies are landing in leading journals and grabbing media attention.

Commercial data and cloud computing are not panaceas for all research questions. NASA and the European Space Agency carefully calibrate the spectral quality of their imagers and test them with particular types of scientific analysis in mind, whereas the aim of many commercial satellites is to take good-quality, high-resolution pictures for governments and private customers. And no company can compete with Landsat’s free, publicly available, 46-year archive of images of Earth’s surface. For commercial data, scientists must often request images of specific regions taken at specific times, and agree not to publish raw data. Some companies reserve cloud-computing assets for researchers with aligned interests such as artificial intelligence or geospatial-data analysis. And although companies publicly make some funding and other resources available for scientists, getting access to commercial data and resources often requires personal connections. Still, by choosing the right data sources and partners, scientists can explore new approaches to research problems.

Mapping poverty

Joshua Blumenstock, an information scientist at the University of California, Berkeley (UCB), is always on the hunt for data he can use to map wealth and poverty, especially in countries that do not conduct regular censuses. “If you’re trying to design policy or do anything to improve living conditions, you generally need data to figure out where to go, to figure out who to help, even to figure out if the things you’re doing are making a difference.”

In a 2015 study, he used records from mobile-phone companies to map Rwanda’s wealth distribution (J. Blumenstock et al. Science 350, 1073–1076; 2015). But to track wealth distribution worldwide, patching together data-sharing agreements with hundreds of these companies would have been impractical. Another potential information source — high-resolution commercial satellite imagery — could have cost him upwards of US$10,000 for data from just one country….

Use of commercial images can also be restricted. Scientists are free to share or publish most government data or data they have collected themselves. But they are typically limited to publishing only the results of studies of commercial data, and at most a limited number of illustrative images.

Many researchers are moving towards a hybrid approach, combining public and commercial data, and running analyses locally or in the cloud, depending on need. Weiss still uses his tried-and-tested ArcGIS software from Esri for studies of small regions, and jumps to Earth Engine for global analyses.

The new offerings herald a shift from an era when scientists had to spend much of their time gathering and preparing data to one in which they’re thinking about how to use them. “Data isn’t an issue any more,” says Roy. “The next generation is going to be about what kinds of questions are we going to be able to ask?”…(More)”.

New Technologies Won’t Reduce Scarcity, but Here’s Something That Might


Vasilis Kostakis and Andreas Roos at the Harvard Business Review: “In a book titled Why Can’t We All Just Get Along?, MIT scientists Henry Lieberman and Christopher Fry discuss why we have wars, mass poverty, and other social ills. They argue that we cannot cooperate with each other to solve our major problems because our institutions and businesses are saturated with a competitive spirit. But Lieberman and Fry have some good news: modern technology can address the root of the problem. They believe that we compete when there is scarcity, and that recent technological advances, such as 3D printing and artificial intelligence, will end widespread scarcity. Thus, a post-scarcity world, premised on cooperation, would emerge.

But can we really end scarcity?

We believe that the post-scarcity vision of the future is problematic because it reflects an understanding of technology and the economy that could worsen the problems it seeks to address. This is the bad news. Here’s why:

New technologies come to consumers as finished products that can be exchanged for money. What consumers often don’t understand is that the monetary exchange hides the fact that many of these technologies exist at the expense of other humans and local environments elsewhere in the global economy….

The good news is that there are alternatives. The wide availability of networked computers has allowed new community-driven and open-source business models to emerge. For example, consider Wikipedia, a free and open encyclopedia that has displaced the Encyclopedia Britannica and Microsoft Encarta. Wikipedia is produced and maintained by a community of dispersed enthusiasts primarily driven by other motives than profit maximization.  Furthermore, in the realm of software, see the case of GNU/Linux on which the top 500 supercomputers and the majority of websites run, or the example of the Apache Web Server, the leading software in the web-server market. Wikipedia, Apache and GNU/Linux demonstrate how non-coercive cooperation around globally-shared resources (i.e. a commons) can produce artifacts as innovative, if not more, as those produced by industrial capitalism.

In the same way, the emergence of networked micro-factories are giving rise to new open-source business models in the realm of design and manufacturing. Such spaces can either be makerspaces, fab labs, or other co-working spaces, equipped with local manufacturing technologies, such as 3D printing and CNC machines or traditional low-tech tools and crafts. Moreover, such spaces often offer collaborative environments where people can meet in person, socialize and co-create.

This is the context in which a new mode of production is emerging. This mode builds on the confluence of the digital commons of knowledge, software, and design with local manufacturing technologies.  It can be codified as “design global, manufacture local” following the logic that what is light (knowledge, design) becomes global, while what is heavy (machinery) is local, and ideally shared. Design global, manufacture local (DGML) demonstrates how a technology project can leverage the digital commons to engage the global community in its development, celebrating new forms of cooperation. Unlike large-scale industrial manufacturing, the DGML model emphasizes application that is small-scale, decentralized, resilient, and locally controlled. DGML could recognize the scarcities posed by finite resources and organize material activities accordingly. First, it minimizes the need to ship materials over long distances, because a considerable part of the manufacturing takes place locally. Local manufacturing also makes maintenance easier, and also encourages manufacturers to design products to last as long as possible. Last, DGML optimizes the sharing of knowledge and design as there are no patent costs to pay for….(More)”

Crowdsourcing as a Platform for Digital Labor Unions


Paper by Payal Arora and Linnea Holter Thompson in the International Journal of Communication: “Global complex supply chains have made it difficult to know the realities in factories. This structure obfuscates the networks, channels, and flows of communication between employers, workers, nongovernmental organizations and other vested intermediaries, creating a lack of transparency. Factories operate far from the brands themselves, often in developing countries where labor is cheap and regulations are weak. However, the emergence of social media and mobile technology has drawn the world closer together. Specifically, crowdsourcing is being used in an innovative way to gather feedback from outsourced laborers with access to digital platforms. This article examines how crowdsourcing platforms are used for both gathering and sharing information to foster accountability. We critically assess how these tools enable dialogue between brands and factory workers, making workers part of the greater conversation. We argue that although there are challenges in designing and implementing these new monitoring systems, these platforms can pave the path for new forms of unionization and corporate social responsibility beyond just rebranding…(More)”

Big Data against Child Obesity


European Commission: “Childhood and adolescent obesity is a major global and European public health problem. Currently, public actions are detached from local needs, mostly including indiscriminate blanket policies and single-element strategies, limiting their efficacy and effectiveness. The need for community-targeted actions has long been obvious, but the lack of monitoring and evaluation framework and the methodological inability to objectively quantify the local community characteristics, in a reasonable timeframe, has hindered that.

Graph showing BigO policy planner

Big Data based Platform

Technological achievements in mobile and wearable electronics and Big Data infrastructures allow the engagement of European citizens in the data collection process, allowing us to reshape policies at a regional, national and European level. In BigO, that will be facilitated through the development of a platform, allowing the quantification of behavioural community patterns through Big Data provided by wearables and eHealth- devices.

Estimate child obesity through community data

BigO has set detailed scientific, technological, validation and business objectives in order to be able to build a system that collects Big Data on children’s behaviour and helps planning health policies against obesity. In addition, during the project, BigO will reach out to more than 25.000 school and age-matched obese children and adolescents as sources for community data. Comprehensive models of the obesity prevalence dependence matrix will be created, allowing the data-driven effectiveness predictions about specific policies on a community and the real-time monitoring of the population response, supported by powerful real-time data visualisations….(More)

Data Governance in the Digital Age


Centre for International Governance Innovation: “Data is being hailed as “the new oil.” The analogy seems appropriate given the growing amount of data being collected, and the advances made in its gathering, storage, manipulation and use for commercial, social and political purposes.

Big data and its application in artificial intelligence, for example, promises to transform the way we live and work — and will generate considerable wealth in the process. But data’s transformative nature also raises important questions around how the benefits are shared, privacy, public security, openness and democracy, and the institutions that will govern the data revolution.

The delicate interplay between these considerations means that they have to be treated jointly, and at every level of the governance process, from local communities to the international arena. This series of essays by leading scholars and practitioners, which is also published as a special report, will explore topics including the rationale for a data strategy, the role of a data strategy for Canadian industries, and policy considerations for domestic and international data governance…

RATIONALE OF A DATA STRATEGY

THE ROLE OF A DATA STRATEGY FOR CANADIAN INDUSTRIES

BALANCING PRIVACY AND COMMERCIAL VALUES

DOMESTIC POLICY FOR DATA GOVERNANCE

INTERNATIONAL POLICY CONSIDERATIONS

EPILOGUE

Ten Reasons Not to Measure Impact—and What to Do Instead


Essay by Mary Kay Gugerty & Dean Karlan in the Stanford Social Innovation Review: “Good impact evaluations—those that answer policy-relevant questions with rigor—have improved development knowledge, policy, and practice. For example, the NGO Living Goods conducted a rigorous evaluation to measure the impact of its community health model based on door-to-door sales and promotions. The evidence of impact was strong: Their model generated a 27-percent reduction in child mortality. This evidence subsequently persuaded policy makers, replication partners, and major funders to support the rapid expansion of Living Goods’ reach to five million people. Meanwhile, rigorous evidence continues to further validate the model and help to make it work even better.

Of course, not all rigorous research offers such quick and rosy results. Consider the many studies required to discover a successful drug and the lengthy process of seeking regulatory approval and adoption by the healthcare system. The same holds true for fighting poverty: Innovations for Poverty Action (IPA), a research and policy nonprofit that promotes impact evaluations for finding solutions to global poverty, has conducted more than 650 randomized controlled trials (RCTs) since its inception in 2002. These studies have sometimes provided evidence about how best to use scarce resources (e.g., give away bed nets for free to fight malaria), as well as how to avoid wasting them (e.g., don’t expand traditional microcredit). But the vast majority of studies did not paint a clear picture that led to immediate policy changes. Developing an evidence base is more like building a mosaic: Each individual piece does not make the picture, but bit by bit a picture becomes clearer and clearer.

How do these investments in evidence pay off? IPA estimated the benefits of its research by looking at its return on investment—the ratio of the benefit from the scale-up of the demonstrated large-scale successes divided by the total costs since IPA’s founding. The ratio was 74x—a huge result. But this is far from a precise measure of impact, since IPA cannot establish what would have happened had IPA never existed. (Yes, IPA recognizes the irony of advocating for RCTs while being unable to subject its own operations to that standard. Yet IPA’s approach is intellectually consistent: Many questions and circumstances do not call for RCTs.)

Even so, a simple thought exercise helps to demonstrate the potential payoff. IPA never works alone—all evaluations and policy engagements are conducted in partnership with academics and implementing organizations, and increasingly with governments. Moving from an idea to the research phase to policy takes multiple steps and actors, often over many years. But even if IPA deserves only 10 percent of the credit for the policy changes behind the benefits calculated above, the ratio of benefits to costs is still 7.4x. That is a solid return on investment.

Despite the demonstrated value of high-quality impact evaluations, a great deal of money and time has been wasted on poorly designed, poorly implemented, and poorly conceived impact evaluations. Perhaps some studies had too small of a sample or paid insufficient attention to establishing causality and quality data, and hence any results should be ignored; others perhaps failed to engage stakeholders appropriately, and as a consequence useful results were never put to use.

The push for more and more impact measurement can not only lead to poor studies and wasted money, but also distract and take resources from collecting data that can actually help improve the performance of an effort. To address these difficulties, we wrote a book, The Goldilocks Challenge, to help guide organizations in designing “right-fit” evidence strategies. The struggle to find the right fit in evidence resembles the predicament that Goldilocks faces in the classic children’s fable. Goldilocks, lost in the forest, finds an empty house with a large number of options: chairs, bowls of porridge, and beds of all sizes. She tries each but finds that most do not suit her: The porridge is too hot or too cold, the bed too hard or too soft—she struggles to find options that are “just right.” Like Goldilocks, the social sector has to navigate many choices and challenges to build monitoring and evaluation systems that fit their needs. Some will push for more and more data; others will not push for enough….(More)”.

The 2018 Atlas of Sustainable Development Goals: an all-new visual guide to data and development


World Bank Data Team: “We’re pleased to release the 2018 Atlas of Sustainable Development Goals. With over 180 maps and charts, the new publication shows the progress societies are making towards the 17 SDGs.

It’s filled with annotated data visualizations, which can be reproducibly built from source code and data. You can view the SDG Atlas onlinedownload the PDF publication (30Mb), and access the data and source code behind the figures.

This Atlas would not be possible without the efforts of statisticians and data scientists working in national and international agencies around the world. It is produced in collaboration with the professionals across the World Bank’s data and research groups, and our sectoral global practices.

Trends and analysis for the 17 SDGs

The Atlas draws on World Development Indicators, a database of over 1,400 indicators for more than 220 economies, many going back over 50 years. For example, the chapter on SDG4 includes data from the UNESCO Institute for Statistics on education and its impact around the world.

Throughout the Atlas, data are presented by country, region and income group and often disaggregated by sex, wealth and geography.

The Atlas also explores new data from scientists and researchers where standards for measuring SDG targets are still being developed. For example, the chapter on SDG14 features research led by Global Fishing Watch, published this year in Science. Their team has tracked over 70,000 industrial fishing vessels from 2012 to 2016, processed 22 billion automatic identification system messages to map and quantify fishing around the world….(More)”.

The GovLab Selected Readings on Blockchain Technologies and the Governance of Extractives


Curation by Andrew Young, Anders Pedersen, and Stefaan G. Verhulst

Readings developed together with NRGI, within the context of our joint project on Blockchain technologies and the Governance of Extractives. Thanks to Joyce Zhang and Michelle Winowatan for research support.

We need your help! Please share any additional readings on the use of Blockchain Technologies in the Extractives Sector with [email protected].  

Introduction

By providing new ways to securely identify individuals and organizations, and record transactions of various types in a distributed manner, blockchain technologies have been heralded as a new tool to address information asymmetries, establish trust and improve governance – particularly around the extraction of oil, gas and other natural resources. At the same time, blockchain technologies are been experimented with to optimize certain parts of the extractives value chain – potentially decreasing transparency and accountability while making governance harder to implement.

Across the expansive and complex extractives sector, blockchain technologies are believed to have particular potential for improving governance in three key areas:  

  • Beneficial ownership and illicit flows screening: The identity of those who benefit, through ownership, from companies that extract natural resources is often hidden – potentially contributing to tax evasion, challenges to global sanction regimes, corruption and money laundering.
  • Land registration, licensing and contracting transparency: To ensure companies extract resources responsibly and comply with rules and fee requirements, effective governance and a process to determine who has the rights to extract natural resources, under what conditions, and who is entitled to the land is essential.
  • Commodity trading and supply chain transparency: The commodity trading sector is facing substantive challenges in assessing and verifying the authenticity of for example oil trades. Costly time is spent by commodity traders reviewing documentation of often poor quality. The expectation of the sector is firstly to eliminate time spent verifying the authenticity of traded goods and secondly to reduce the risk premium on trades. Transactions from resources and commodities trades are often opaque and secretive, allowing for governments and companies to conceal how much money they receive from trading, and leading to corruption and evasion of taxation.

In the below we provide a selection of the nascent but growing literature on Blockchain Technologies and Extractives across six categories:

Selected Readings 

Blockchain Technologies and Extractives – Promise and Current Potential

Adams, Richard, Beth Kewell, Glenn Parry. “Blockchain for Good? Digital Ledger Technology and Sustainable Development Goals.” Handbook of Sustainability and Social Science Research. October 27, 2017.

  • This chapter in the Handbook of Sustainability and Social Science Research seeks to reflect and explore the different ways Blockchain for Good (B4G) projects can provide social and environmental benefits under the UN’s Sustainable Goals framework
  • The authors describe the main categories in which blockchain can achieve social impact: mining/consensus algorithms that reward good behavior, benefits linked to currency use in the form of “colored coins,” innovations in supply chain, innovations in government, enabling the sharing economy, and fostering financial inclusion.
  • The chapter concludes that with B4G there is also inevitably “Blockchain for Bad.” There is already critique and failures of DLTs such as the DAO, and more research must be done to identify whether DLTs can provide a more decentralized, egalitarian society, or if they will ultimately be another tool for control and surveillance by organizations and government.

Cullinane, Bernadette, and Randy Wilson. “Transforming the Oil and Gas Industry through Blockchain.” Official Journal of the Australian Institute of Energy News, p 9-10, December 2017.

  • In this article, Cullinane and Wilson explore blockchain’s application in the oil and gas industry “presents a particularly compelling opportunity…due to the high transactional values, associated risks and relentless pressure to reduce costs.”
  • The authors elaborate four areas where blockchain can benefit play a role in transforming the oil and gas industry:
    • Supply chain management
    • Smart contracts
    • Record management
    • Cross-border payments

Da Silva, Filipe M., and Ankita Jaitly. “Blockchain in Natural Resources: Hedging Against Volatile Prices.” Tata Consultancy Services Ltd., 2018.

  • The authors of this white paper assess the readiness of natural resources industries for blockchain technology application, identify areas where blockchain can add value, and outline a strategic plan for its adoption.
  • In particular, they highlight the potential for blockchain in the oil and gas industry to simplify payments, where for example, gas can be delivered directly to consumer homes using a blockchain smart contracting application.

Halford-Thompson, Guy. “Powered by Blockchain: Reinventing Information Management in the Energy Space.” BTL, May 12, 2017.

  • According to Halford-Thompson, “oil and gas companies are exploring blockchain’s promise to revamp inefficient internal processes and achieve significant reductions in operating costs through the automation of record keeping and messaging, the digitization of the supply chain information flow, and the elimination of reconciliation, among many other data management use cases.”
  • The data reconciliation process, for one, is complex and can require significant time for completion. Blockchain technology could not only remove the need for some steps in the information reconciliation process, but also eliminate the need for reconciliation altogether in some instances.

Blockchain Technologies and the Governance of Extractives

(See also: Selected Readings of Blockchain Technologies and its Potential to Transform Governance)

Koeppen, Mark, David Shrier, and Morgan Bazilian. “Is Blockchain’s Future in Oil and Gas Transformative Or Transient? Deloitte, 2017.

  • In this report, the authors propose four areas that blockchain can improve for the oil and gas industry, which are:
    • Transparency and compliance: Employment of blockchain is predicted to significantly reduce cost related to compliance, since it securely makes information available to all parties involved in the supply chain.
    • Cyber threats and security: The industry faces constant digital security threat and blockchain provides a solution to address this issue.
    • Mid-volume trading/third party impacts: They argue that the “boundaries between asset classes will blur as cash, energy products and other commodities, from industrial components to apples could all become digital assets trading interoperably.”
    • Smart contract: Since the “sheer size and volume of contracts and transactions to execute capital projects in oil and gas have historically caused significant reconciliation and tracking issues among contractors, sub-contractors, and suppliers,” blockchain-enabled smart contracts could improve the process by executing automatically after all requirements are met, and boosting contract efficiency and protecting each party from volatile pricing.

Mawet, Pierre, and Michael Insogna. “Unlocking the Potential of Blockchain in Oil and Gas Supply Chains.” Accenture Energy Blog, November 21, 2016.

  • The authors propose three ways blockchain technology can boost productivity and efficiency in oil and gas industry:
    • “Greater process efficiency. Smart contracts, for example, can be held in a blockchain transaction with party compliance confirmed through follow-on transactions, reducing third-party supervision and paper-based contracting, thus helping reduce cost and overhead.”
    • “Compliance. Visibility is essential to improve supply chain performance. The immutable record of transactions can aid in product traceability and asset tracking.”
    • “Data transfer from IoT sensors. Blockchain could be used to track the unique history of a device, with the distributed ledger recording data transfer from multiple sensors. Data security in devices could be safeguarded by unique blockchain characteristics.”

Som, Indranil. “Blockchain: Radically Changing the Mining Paradigm.” Digitalist, September 27, 2017.

  • In this article, Som proposes three ways that the blockchain technology can “support leaner organizations and increased security” in the mining industry: improving cybersecurity, increasing transparency through smart contracts, and providing visibility into the supply chain.

Identity: Beneficial Ownership and Illicit Flows

(See also: Selected Readings on Blockchain Technologies and Identity).

de Jong, Julia, Alexander Meyer, and Jeffrey Owens. “Using blockchain for transparent beneficial ownership registers. International Tax Review, June 2017.

  • This paper discusses the features of blockchain and distributed ledger technology that can improve collection and distribution of information on beneficial ownership.
  • The FATF and OECD Global Forum regimes have identified a number of common problems related to beneficial ownership information across all jurisdictions, including:
    • “Insufficient accuracy and accessibility of company identification and ownership information;
    • Less rigorous implementation of customer due-diligence (CDD) measures by key gatekeepers such as lawyers, accountants, and trust and company service providers; and
    • Obstacles to information sharing such as data protection and privacy laws, which impede competent authorities from receiving timely access to adequate, accurate and up-to-date information on basic legal and beneficial ownership.”
  • The authors argue that the transparency, immutability, and security offered by blockchain makes it ideally suited for record-keeping, particularly with regards to the ownership of assets. Thus, blockchain can address many of the shortcomings in the current system as identified by the FATF and the OECD.
  • They go on to suggest that a global registry of beneficial ownership using blockchain technology would offer the following benefits:
    • Ensuring real-time accuracy and verification of ownership information
    • Increasing security and control over sensitive personal and commercial information
    • Enhancing audit transparency
    • Creating the potential for globally-linked registries
    • Reducing corruption and fraud, and increasing trust
    • Reducing compliance burden for regulate entities

Herian, Robert. “Trusteeship in a Post-Trust World: Property, Trusts Law and the Blockchain.” The Open University, 2016.

  • This working paper discusses the often overlooked topic of trusteeship and trusts law and the implications of blockchain technology in the space. 
  • “Smart trusts” on the blockchain will distribute trusteeship across a network and, in theory, remove the need for continuous human intervention in trust fund investments thus resolving key issues around accountability and the potential for any breach of trust.
  • Smart trusts can also increase efficiency and security of transactions, which could improve the overall performance of the investment strategy, thereby creating higher returns for beneficiaries.

Karsten, Jack and Darrell M. West (2018): “Venezuela’s “petro” undermines other cryptocurrencies – and international sanctions.” Brookings, Friday, March 9 2018,

  • This article discusses the Venezuelan government’s cryptocurrency, “petro,” which was launched as a solution to the country’s economic crisis and near-worthless currency, “bolívar”
  • Unlike the volatility of other cryptocurrencies such as Bitcoin and Litecoin, one petro’s price is pegged to the price of one barrel of Venezuelan oil – roughly $60
  • And rather than decentralizing control like most blockchain applications, the petro is subject to arbitrary discount factor adjustment, fluctuating oil prices, and a corrupt government known for manipulating its currency
  • The authors warn the petro will not stabilize the Venezuelan economy since only foreign investors funded the presale, yet (from the White Paper) only Venezuelan citizens can use the cryptocurrency to pay taxes, fees, and other expenses. Rather, they argue, the petro represents an attempt to create foreign capital out of “thin air,” which is not subject to traditional economic sanctions.  

Land Registration, Licensing and Contracting Transparency

Michael Graglia and Christopher Mellon. “Blockchain and Property in 2018: At the End of the Beginning.” 2018 World Bank Conference on Land and Poverty, March 19-23, 2018.

  • This paper claims “blockchain makes sense for real estate” because real estate transactions depend on a number of relationships, processes, and intermediaries that must reconcile all transactions and documents for an action to occur. Blockchain and smart contracts can reduce the time and cost of transactions while ensuring secure and transparent record-keeping systems.
  • The ease, efficiency, and security of transactions can also create an “international market for small real estate” in which individuals who cannot afford an entire plot of land can invest small amounts and receive their portion of rental payments automatically through smart contracts.
  • The authors describe seven prerequisites that land registries must fulfill before blockchain can be introduced successfully: accurate data, digitized records, an identity solution, multi-sig wallets, a private or hybrid blockchain, connectivity and a tech aware population, and a trained professional community
  • To achieve the goal of an efficient and secure property registry, the authors propose an 8-level progressive framework through which registries slowly integrate blockchain due to legal complexity of land administration, resulting inertia of existing processes, and high implementation costs.  
    • Level 0 – No Integration
    • Level 1 – Blockchain Recording
    • Level 2 – Smart Workflow
    • Level 3 – Smart Escrow
    • Level 4 – Blockchain Registry
    • Level 5 – Disaggregated Rights
    • Level 6 – Fractional Rights
    • Level 7 – Peer-to-Peer Transactions
    • Level 8 – Interoperability

Thomas, Rod. “Blockchain’s Incompatibility for Use as a Land Registry: Issues of Definition, Feasibility and Risk. European Property Law Journal, vol. 6, no. 3, May 2017.

  • Thomas argues that blockchain, as it is currently understood and defined, is unsuited for the transfer of real property rights because it fails to address the need for independent verification and control.
  • Under a blockchain-based system, coin holders would be in complete control of the recordation of the title interests of their land, and thus, it would be unlikely that they would report competing or contested claims.
  • Since land remains in the public domain, the risk of third party possessory title claims are likely to occur; and over time, these risks will only increase exponentially.
  • A blockchain-based land title represents interlinking and sequential transactions over many hundreds, if not thousands, of years, so given the misinformation that would compound over time, it would be difficult to trust the current title holder has a correctly recorded title
  • The author concludes that supporters of blockchain for land registries frequently overlook a registry’s primary function to provide an independent verification of the provenance of stored data.

Vos, Jacob, Christiaan Lemmen, and Bert Beentjes. “Blockchain-Based Land Registry: Panacea, Illusion or Something In Between? 2017 World Bank Conference on Land and Poverty, March 20-24, 2017.

  • The authors propose that blockchain is best suited for the following steps in land administration:
    • The issuance of titles
    • The archiving of transactions – specifically in countries that do not have a reliable electronic system of transfer of ownership
  • The step in between issuing titles and archiving transactions is the most complex – the registration of the transaction. This step includes complex relationships between the “triple” of land administration: rights (right in rem and/or personal rights), object (spatial unit), and subject (title holder). For the most part, this step is done manually by registrars, and it is questionable whether blockchain technology, in the form of smart contracts, will be able to process these complex transactions.
  • The authors conclude that one should not underestimate the complexity of the legal system related to land administration. The standardization of processes may be the threshold to success of blockchain-based land administration. The authors suggest instead of seeking to eliminate one party from the process, technologists should cooperate with legal and geodetic professionals to create a system of checks and balances to successfully implement blockchain for land administration.  
  • This paper also outlines five blockchain-based land administration projects launched in Ghana, Honduras, Sweden, Georgia, and Cook County, Illinois.

Commodity Trading and Supply Chain Transparency

Ahmed, Shabir. “Leveraging Blockchain to Revolutionise the Mining Industry.” SAP News, February 27, 2018.

  • In this article, Ahmed identifies seven key use cases for blockchain in the mining industry:
    • Automation of ore acquisition and transfer;
    • Automatic registration of mineral rights and IP;
    • Visibility of ore inventory at ports;
    • Automatic cargo hire process;
    • Process and secure large amounts of IoT data;
    • Reconciling amount produced and sent for processing;
    • Automatically execute procurement and other contracts.

Brooks, Michael. “Blockchain and the Fight Against Illicit Financial Flows.” The Policy Corner, February 19, 2018.

  • In this article, Brooks argues that, “Because of the inherent decentralization and immutability of data within blockchains, it offers a unique opportunity to bypass traditional tracking and transparency initiatives that require strong central governance and low levels of corruption. It could, to a significant extent, bypass the persistent issues of authority and corruption by democratizing information around data consensus, rather than official channels and occasional studies based off limited and often manipulated information. Within the framework of a coherent policy initiative that integrates all relevant stakeholders (states, transnational organizations, businesses, NGOs, other monitors and oversight bodies), a international supply chains supported by blockchain would decrease the ease with which resources can be hidden, numbers altered, and trade misinvoiced.”

Conflict Free Natural Resources.” Global Opportunity Report 2017. Global Opportunity Network, 2017.

  • In this entry from the Global Opportunity Report, and specifically toward the end of ensuring conflict-free natural resources, Blockchain is labeled as “well-suited for tracking objects and transactions, making it possible for virtually anything of value to be traced. This opportunity is about creating transparency and product traceability in supply chains.

Blockchain for Traceability in Minerals and Metals Supply Chains: Opportunities and Challenges.” RCS Global and ICMM, 2017.

  • This report is based on insights generated during the Materials Stewardship Round Table on the potential of BCTs for tracking and tracing metals and minerals supply chains, which subsequently informed an RCS Global research initiative on the topic.
  • Insight into two key areas is increasingly desired by downstream manufacturing companies from upstream producers of metals and minerals: provenance and production methods
  • In particular, the report offers five key potential advantages of using Blockchain for mineral and metal supply chain activities:
    • “Builds consensus and trust around responsible production standards between downstream and upstream companies.
    • The immutability of and decentralized control over a blockchain system minimizes the risk of fraud.
    • Defined datasets can be made accessible in real time to any third party, including downstream buyers, auditors, investors, etc. but at the same time encrypted so as to share a proof of fact rather than confidential information.
    • A blockchain system can be easily scaled to include other producers and supply chains beyond those initially involved.
    • Cost reduction due to the paperless nature of a blockchain-enabled CoC [Chain of Custody] system, the potential reduction of audits, and reduction in transaction costs.”

Van Bockstael, Steve. “The emergence of conflict-free, ethical, and Fair Trade mineral supply chain certification systems: A brief introduction.” The Extractives Industries and Society, vol. 5, issue 1, January 2018.

  • This introduction to a special section considers the emerging field of “‘conflict-free’, ‘fair’ and ‘transparently sourced and traded’ minerals” in global industry supply chains.
  • Van Bockstael describes three areas of practice aimed at increasing supply chain transparency:
    • “Initiatives that explicitly try to sever the links between mining or minerals trading and armed conflict of the funding thereof.”
    • “Initiatives, limited in number yet growing, that are explicitly linked to the internationally recognized ‘Fair Trade’ movement and whose aim it is to source artisanally mined minerals for the Western jewellry industry.”
    • “Initiatives that aim to provide consumers or consumer-facing industries with more ethical, transparent and fair supply chains (often using those concepts in fuzzy and interchangeable ways) that are not linked to the established Fair Trade movement” – including, among others, initiatives using Blockchain technology “to create tamper-proof supply chains.”

Global Governance, Standards and Disclosure Practices

Lafarre, Anne and Christoph Van der Elst. “Blockchain Technology for Corporate Governance and Shareholder Activism.” European Corporate Governance Institute (ECGI) – Law Working Paper No. 390/2018, March 8, 2018.

  • This working paper focuses on the potential benefits of leveraging Blockchain during functions involving shareholder and company decision making. Lafarre and Van der Elst argue that “Blockchain technology can lower shareholder voting costs and the organization costs for companies substantially. Moreover, blockchain technology can increase the speed of decision-making, facilitate fast and efficient involvement of shareholders.”
  • The authors argue that in the field of corporate governance, Blockchain offers two important elements: “transparency – via the verifiable way of recording transactions – and trust – via the immutability of these transactions.”
  • Smart contracting, in particular, is seen as a potential avenue for facilitating the ‘agency relationship’ between board members and the shareholders they represent in corporate decision-making processes.

Myung, San Jun. “Blockchain government – a next for of infrastructure for the twenty-first century.” Journal of Open Innovation: Technology, Market, and Complexity, December 2018.

  • This paper argues the idea that Blockchain represents a new form of infrastructure that, given its core consensus mechanism, could replace existing social apparatuses including bureaucracy.
  • Indeed, Myung argues that blockchain and bureaucracy share a number of attributes:
    • “First, both of them are defined by the rules and execute predetermined rules.
    • Second, both of them work as information processing machines for society.
    • Third, both of them work as trust machines for society.”  
  • The piece concludes with five principles for replacing bureaucracy with blockchain for social organization: “1) introducing Blockchain Statute law; 2) transparent disclosure of data and source code; 3) implementing autonomous executing administration; 4) building a governance system based on direct democracy; and 5) making Distributed Autonomous Government (DAG).  

Peters, Gareth and Vishnia, Guy (2016): “Blockchain Architectures for Electronic Exchange Reporting Requirements: EMIR, Dodd Frank, MiFID I/II, MiFIR, REMIT, Reg NMS and T2S.” University College London, August 31, 2016.

  • This paper offers a solution based on blockchain architectures to the regulations of financial exchanges around the world for trade processing and reporting for execution and clearing. In particular, the authors give a detailed overview of EMIR, Dodd Frank, MiFID I/II, MiFIR, REMIT, Reg NMS and T2S.
  • The authors suggest the increasing amount of data from transaction reporting start to be incorporated on a blockchain ledger in order to harness the built-in security and immutability features of the blockchain to support key regulatory features.
  • Specifically, the authors suggest 1) a permissioned blockchain controlled by a regulator or a consortium of market participants for the maintenance of identity data from market participants and 2) blockchain frameworks such as Enigma to be used to facilitate required transparency and reporting aspects related to identities when performing pre- and post-trade reporting as well as for auditing.

Blockchain Technology and Competition Policy – Issues paper by the Secretariat,” OECD, June 8, 2018.

  • This OECD issues paper poses two key questions about how blockchain technology might increase the relevance of new disclosures practices:
    • “Should competition agencies be given permission to access blockchains? This might enable them to monitor trading prices in real-time, spot suspicious trends, and, when investigating a merger, conduct or market have immediate access to the necessary data without needing to impose burdensome information requests on parties.”
    • “Similarly, easy access to the information on a blockchain for a firm’s owners and head offices would potentially improve the effectiveness of its oversight on its own subsidiaries and foreign holdings. Competition agencies may assume such oversight already exists, but by making it easier and cheaper, a blockchain might make it more effective, which might allow for more effective centralised compliance programmes.”

Michael Pisa and Matt Juden. “Blockchain and Economic Development: Hype vs. Reality.” Center for Global Development Policy Paper, 2017.

  • In this Center for Global Development Policy Paper, the authors examine blockchain’s potential to address four major development challenges: (1) facilitating faster and cheaper international payments, (2) providing a secure digital infrastructure for verifying identity, (3) securing property rights, and (4) making aid disbursement more secure and transparent.
  • The authors conclude that while blockchain may be well suited for certain use cases, the majority of constraints in blockchain-based projects fall outside the scope of technology. Common constraints such as data collection and privacy, governance, and operational resiliency must be addressed before blockchain can be successfully implemented as a solution.

Industry-Specific Case Studies

Chohan, Usman. “Blockchain and the Extractive Industries: Cobalt Case Study,” University of New South Wales, Canberra Discussion Paper Series: Notes on the 21st Century, 2018.

  • In this discussion paper, the author studies the pilot use of blockchain in cobalt mining industry in the Democratic Republic of Congo (DRC). The project tracked the movement of cobalt from artisanal mines through its installation in devices such as smartphones and electric cars.
  • The project records cobalt attributes – weights, dates, times, images, etc. – into the digital ledger to help ensure that cobalt purchases are not contributing to forced child labor or conflict minerals. 

Chohan, Usman. “Blockchain and the Extractive Industries #2: Diamonds Case Study,” University of New South Wales, Canberra Discussion Paper Series: Notes on the 21st Century, 2018.

  • The second case study from Chohan investigates the application of blockchain technology in the extractive industry by studying Anglo-American (AAL) diamond DeBeer’s unit and Everledger’s blockchain projects. 
  • In this study, the author finds that AAL uses blockchain to track gems (carat, color, certificate numbers), starting from extraction and onwards, including when the gems change hands in trade transaction.
  • Like the cobalt pilot, the AAL initiative aims to help avoid supporting conflicts and forced labor, and to improve trading accountability and transparency more generally.