Michael White in PSMagazine on how modern statistics have made it easier than ever for us to fool ourselves: “Scientific results often defy common sense. Sometimes this is because science deals with phenomena that occur on scales we don’t experience directly, like evolution over billions of years or molecules that span billionths of meters. Even when it comes to things that happen on scales we’re familiar with, scientists often draw counter-intuitive conclusions from subtle patterns in the data. Because these patterns are not obvious, researchers rely on statistics to distinguish the signal from the noise. Without the aid of statistics, it would be difficult to convincingly show that smoking causes cancer, that drugged bees can still find their way home, that hurricanes with female names are deadlier than ones with male names, or that some people have a precognitive sense for porn.
OK, very few scientists accept the existence of precognition. But Cornell psychologist Daryl Bem’s widely reported porn precognition study illustrates the thorny relationship between science, statistics, and common sense. While many criticisms were leveled against Bem’s study, in the end it became clear that the study did not suffer from an obvious killer flaw. If it hadn’t dealt with the paranormal, it’s unlikely that Bem’s work would have drawn much criticism. As one psychologist put it after explaining how the study went wrong, “I think Bem’s actually been relatively careful. The thing to remember is that this type of fudging isn’t unusual; to the contrary, it’s rampant–everyone does it. And that’s because it’s very difficult, and often outright impossible, to avoid.”…
That you can lie with statistics is well known; what is less commonly noted is how much scientists still struggle to define proper statistical procedures for handling the noisy data we collect in the real world. In an exchange published last month in the Proceedings of the National Academy of Sciences, statisticians argued over how to address the problem of false positive results, statistically significant findings that on further investigation don’t hold up. Non-reproducible results in science are a growing concern; so do researchers need to change their approach to statistics?
Valen Johnson, at Texas A&M University, argued that the commonly used threshold for statistical significance isn’t as stringent as scientists think it is, and therefore researchers should adopt a tighter threshold to better filter out spurious results. In reply, statisticians Andrew Gelman and Christian Robert argued that tighter thresholds won’t solve the problem; they simply “dodge the essential nature of any such rule, which is that it expresses a tradeoff between the risks of publishing misleading results and of important results being left unpublished.” The acceptable level of statistical significance should vary with the nature of the study. Another team of statisticians raised a similar point, arguing that a more stringent significance threshold would exacerbate the worrying publishing bias against negative results. Ultimately, good statistical decision making “depends on the magnitude of effects, the plausibility of scientific explanations of the mechanism, and the reproducibility of the findings by others.”
However, arguments over statistics usually occur because it is not always obvious how to make good statistical decisions. Some bad decisions are clear. As xkcd’s Randall Munroe illustrated in his comic on the spurious link between green jelly beans and acne, most people understand that if you keep testing slightly different versions of a hypothesis on the same set of data, sooner or later you’re likely to get a statistically significant result just by chance. This kind of statistical malpractice is called fishing or p-hacking, and most scientists know how to avoid it.
But there are more subtle forms of the problem that pervade the scientific literature. In an unpublished paper (PDF), statisticians Andrew Gelman, at Columbia University, and Eric Loken, at Penn State, argue that researchers who deliberately avoid p-hacking still unknowingly engage in a similar practice. The problem is that one scientific hypothesis can be translated into many different statistical hypotheses, with many chances for a spuriously significant result. After looking at their data, researchers decide which statistical hypothesis to test, but that decision is skewed by the data itself.
To see how this might happen, imagine a study designed to test the idea that green jellybeans cause acne. There are many ways the results could come out statistically significant in favor of the researchers’ hypothesis. Green jellybeans could cause acne in men, but not in women, or in women but not men. The results may be statistically significant if the jellybeans you call “green” include Lemon Lime, Kiwi, and Margarita but not Sour Apple. Gelman and Loken write that “researchers can perform a reasonable analysis given their assumptions and their data, but had the data turned out differently, they could have done other analyses that were just as reasonable in those circumstances.” In the end, the researchers may explicitly test only one or a few statistical hypotheses, but their decision-making process has already biased them toward the hypotheses most likely to be supported by their data. The result is “a sort of machine for producing and publicizing random patterns.”
Gelman and Loken are not alone in their concern. Last year Daniele Fanelli, at the University of Edingburgh, and John Ioannidis, at Stanford University, reported that many U.S. studies, particularly in the social sciences, may overestimate the effect sizes of their results. “All scientists have to make choices throughout a research project, from formulating the question to submitting results for publication.” These choices can be swayed “consciously or unconsciously, by scientists’ own beliefs, expectations, and wishes, and the most basic scientific desire is that of producing an important research finding.”
What is the solution? Part of the answer is to not let measures of statistical significance override our common sense—not our naïve common sense, but our scientifically-informed common sense…”
Selected Readings on Crowdsourcing Tasks and Peer Production
The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of crowdsourcing was originally published in 2014.
Technological advances are creating a new paradigm by which institutions and organizations are increasingly outsourcing tasks to an open community, allocating specific needs to a flexible, willing and dispersed workforce. “Microtasking” platforms like Amazon’s Mechanical Turk are a burgeoning source of income for individuals who contribute their time, skills and knowledge on a per-task basis. In parallel, citizen science projects – task-based initiatives in which citizens of any background can help contribute to scientific research – like Galaxy Zoo are demonstrating the ability of lay and expert citizens alike to make small, useful contributions to aid large, complex undertakings. As governing institutions seek to do more with less, looking to the success of citizen science and microtasking initiatives could provide a blueprint for engaging citizens to help accomplish difficult, time-consuming objectives at little cost. Moreover, the incredible success of peer-production projects – best exemplified by Wikipedia – instills optimism regarding the public’s willingness and ability to complete relatively small tasks that feed into a greater whole and benefit the public good. You can learn more about this new wave of “collective intelligence” by following the MIT Center for Collective Intelligence and their annual Collective Intelligence Conference.
Selected Reading List (in alphabetical order)
- Yochai Benkler — The Wealth of Networks: How Social Production Transforms Markets and Freedom — a book on the ways commons-based peer-production is transforming modern society.
- Daren C. Brabham — Using Crowdsourcing in Government — a report describing the diversity of methods crowdsourcing could be greater utilized by governments, including through the leveraging of micro-tasking platforms.
- Kevin J. Boudreau, Patrick Gaule, Karim Lakhani, Christoph Reidl, Anita Williams Woolley – From Crowds to Collaborators: Initiating Effort & Catalyzing Interactions Among Online Creative Workers – a working paper exploring the conditions,
- including incentives, that affect online collaboration.
- Chiara Franzoni and Henry Sauermann — Crowd Science: The Organization of Scientific Research in Open Collaborative Projects — a paper describing the potential advantages of deploying crowd science in a variety of contexts.
- Aniket Kittur, Ed H. Chi and Bongwon Suh — Crowdsourcing User Studies with Mechanical Turk — a paper proposing potential benefits beyond simple task completion for microtasking platforms like Mechanical Turk.
- Aniket Kittur, Jeffrey V. Nickerson, Michael S. Bernstein, Elizabeth M. Gerber, Aaron Shaw, John Zimmerman, Matthew Lease, and John J. Horton — The Future of Crowd Work — a paper describing the promise of increased and evolved crowd work’s effects on the global economy.
- Michael J. Madison — Commons at the Intersection of Peer Production, Citizen Science, and Big Data: Galaxy Zoo — an in-depth case study of the Galaxy Zoo containing insights regarding the importance of clear objectives and institutional and/or professional collaboration in citizen science initiatives.
- Thomas W. Malone, Robert Laubacher and Chrysanthos Dellarocas – Harnessing Crowds: Mapping the Genome of Collective Intelligence – an article proposing a framework for understanding collective intelligence efforts.
- Geoff Mulgan – True Collective Intelligence? A Sketch of a Possible New Field – a paper proposing theoretical building blocks and an experimental and research agenda around the field of collective intelligence.
- Henry Sauermann and Chiara Franzoni – Participation Dynamics in Crowd-Based Knowledge Production: The Scope and Sustainability of Interest-Based Motivation – a paper exploring the role of interest-based motivation in collaborative knowledge production.
- Catherine E. Schmitt-Sands and Richard J. Smith – Prospects for Online Crowdsourcing of Social Science Research Tasks: A Case Study Using Amazon Mechanical Turk – an article describing an experiment using Mechanical Turk to crowdsource public policy research microtasks.
- Clay Shirky — Here Comes Everybody: The Power of Organizing Without Organizations — a book exploring the ways largely unstructured collaboration is remaking practically all sectors of modern life.
- Jonathan Silvertown — A New Dawn for Citizen Science — a paper examining the diverse factors influencing the emerging paradigm of “science by the people.”
- Katarzyna Szkuta, Roberto Pizzicannella, David Osimo – Collaborative approaches to public sector innovation: A scoping study – an article studying success factors and incentives around the collaborative delivery of online public services.
Annotated Selected Reading List (in alphabetical order)
Benkler, Yochai. The Wealth of Networks: How Social Production Transforms Markets and Freedom. Yale University Press, 2006. http://bit.ly/1aaU7Yb.
- In this book, Benkler “describes how patterns of information, knowledge, and cultural production are changing – and shows that the way information and knowledge are made available can either limit or enlarge the ways people can create and express themselves.”
- In his discussion on Wikipedia – one of many paradigmatic examples of people collaborating without financial reward – he calls attention to the notable ongoing cooperation taking place among a diversity of individuals. He argues that, “The important point is that Wikipedia requires not only mechanical cooperation among people, but a commitment to a particular style of writing and describing concepts that is far from intuitive or natural to people. It requires self-discipline. It enforces the behavior it requires primarily through appeal to the common enterprise that the participants are engaged in…”
Brabham, Daren C. Using Crowdsourcing in Government. Collaborating Across Boundaries Series. IBM Center for The Business of Government, 2013. http://bit.ly/17gzBTA.
- In this report, Brabham categorizes government crowdsourcing cases into a “four-part, problem-based typology, encouraging government leaders and public administrators to consider these open problem-solving techniques as a way to engage the public and tackle difficult policy and administrative tasks more effectively and efficiently using online communities.”
- The proposed four-part typology describes the following types of crowdsourcing in government:
- Knowledge Discovery and Management
- Distributed Human Intelligence Tasking
- Broadcast Search
- Peer-Vetted Creative Production
- In his discussion on Distributed Human Intelligence Tasking, Brabham argues that Amazon’s Mechanical Turk and other microtasking platforms could be useful in a number of governance scenarios, including:
- Governments and scholars transcribing historical document scans
- Public health departments translating health campaign materials into foreign languages to benefit constituents who do not speak the native language
- Governments translating tax documents, school enrollment and immunization brochures, and other important materials into minority languages
- Helping governments predict citizens’ behavior, “such as for predicting their use of public transit or other services or for predicting behaviors that could inform public health practitioners and environmental policy makers”
Boudreau, Kevin J., Patrick Gaule, Karim Lakhani, Christoph Reidl, Anita Williams Woolley. “From Crowds to Collaborators: Initiating Effort & Catalyzing Interactions Among Online Creative Workers.” Harvard Business School Technology & Operations Mgt. Unit Working Paper No. 14-060. January 23, 2014. https://bit.ly/2QVmGUu.
- In this working paper, the authors explore the “conditions necessary for eliciting effort from those affecting the quality of interdependent teamwork” and “consider the the role of incentives versus social processes in catalyzing collaboration.”
- The paper’s findings are based on an experiment involving 260 individuals randomly assigned to 52 teams working toward solutions to a complex problem.
- The authors determined the level of effort in such collaborative undertakings are sensitive to cash incentives. However, collaboration among teams was driven more by the active participation of teammates, rather than any monetary reward.
Franzoni, Chiara, and Henry Sauermann. “Crowd Science: The Organization of Scientific Research in Open Collaborative Projects.” Research Policy (August 14, 2013). http://bit.ly/HihFyj.
- In this paper, the authors explore the concept of crowd science, which they define based on two important features: “participation in a project is open to a wide base of potential contributors, and intermediate inputs such as data or problem solving algorithms are made openly available.” The rationale for their study and conceptual framework is the “growing attention from the scientific community, but also policy makers, funding agencies and managers who seek to evaluate its potential benefits and challenges. Based on the experiences of early crowd science projects, the opportunities are considerable.”
- Based on the study of a number of crowd science projects – including governance-related initiatives like Patients Like Me – the authors identify a number of potential benefits in the following categories:
- Knowledge-related benefits
- Benefits from open participation
- Benefits from the open disclosure of intermediate inputs
- Motivational benefits
- The authors also identify a number of challenges:
- Organizational challenges
- Matching projects and people
- Division of labor and integration of contributions
- Project leadership
- Motivational challenges
- Sustaining contributor involvement
- Supporting a broader set of motivations
- Reconciling conflicting motivations
Kittur, Aniket, Ed H. Chi, and Bongwon Suh. “Crowdsourcing User Studies with Mechanical Turk.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 453–456. CHI ’08. New York, NY, USA: ACM, 2008. http://bit.ly/1a3Op48.
- In this paper, the authors examine “[m]icro-task markets, such as Amazon’s Mechanical Turk, [which] offer a potential paradigm for engaging a large number of users for low time and monetary costs. [They] investigate the utility of a micro-task market for collecting user measurements, and discuss design considerations for developing remote micro user evaluation tasks.”
- The authors conclude that in addition to providing a means for crowdsourcing small, clearly defined, often non-skill-intensive tasks, “Micro-task markets such as Amazon’s Mechanical Turk are promising platforms for conducting a variety of user study tasks, ranging from surveys to rapid prototyping to quantitative measures. Hundreds of users can be recruited for highly interactive tasks for marginal costs within a timeframe of days or even minutes. However, special care must be taken in the design of the task, especially for user measurements that are subjective or qualitative.”
Kittur, Aniket, Jeffrey V. Nickerson, Michael S. Bernstein, Elizabeth M. Gerber, Aaron Shaw, John Zimmerman, Matthew Lease, and John J. Horton. “The Future of Crowd Work.” In 16th ACM Conference on Computer Supported Cooperative Work (CSCW 2013), 2012. http://bit.ly/1c1GJD3.
- In this paper, the authors discuss paid crowd work, which “offers remarkable opportunities for improving productivity, social mobility, and the global economy by engaging a geographically distributed workforce to complete complex tasks on demand and at scale.” However, they caution that, “it is also possible that crowd work will fail to achieve its potential, focusing on assembly-line piecework.”
- The authors argue that seven key challenges must be met to ensure that crowd work processes evolve and reach their full potential:
- Designing workflows
- Assigning tasks
- Supporting hierarchical structure
- Enabling real-time crowd work
- Supporting synchronous collaboration
- Controlling quality
Madison, Michael J. “Commons at the Intersection of Peer Production, Citizen Science, and Big Data: Galaxy Zoo.” In Convening Cultural Commons, 2013. http://bit.ly/1ih9Xzm.
- This paper explores a “case of commons governance grounded in research in modern astronomy. The case, Galaxy Zoo, is a leading example of at least three different contemporary phenomena. In the first place, Galaxy Zoo is a global citizen science project, in which volunteer non-scientists have been recruited to participate in large-scale data analysis on the Internet. In the second place, Galaxy Zoo is a highly successful example of peer production, some times known as crowdsourcing…In the third place, is a highly visible example of data-intensive science, sometimes referred to as e-science or Big Data science, by which scientific researchers develop methods to grapple with the massive volumes of digital data now available to them via modern sensing and imaging technologies.”
- Madison concludes that the success of Galaxy Zoo has not been the result of the “character of its information resources (scientific data) and rules regarding their usage,” but rather, the fact that the “community was guided from the outset by a vision of a specific organizational solution to a specific research problem in astronomy, initiated and governed, over time, by professional astronomers in collaboration with their expanding universe of volunteers.”
Malone, Thomas W., Robert Laubacher and Chrysanthos Dellarocas. “Harnessing Crowds: Mapping the Genome of Collective Intelligence.” MIT Sloan Research Paper. February 3, 2009. https://bit.ly/2SPjxTP.
- In this article, the authors describe and map the phenomenon of collective intelligence – also referred to as “radical decentralization, crowd-sourcing, wisdom of crowds, peer production, and wikinomics – which they broadly define as “groups of individuals doing things collectively that seem intelligent.”
- The article is derived from the authors’ work at MIT’s Center for Collective Intelligence, where they gathered nearly 250 examples of Web-enabled collective intelligence. To map the building blocks or “genes” of collective intelligence, the authors used two pairs of related questions:
- Who is performing the task? Why are they doing it?
- What is being accomplished? How is it being done?
- The authors concede that much work remains to be done “to identify all the different genes for collective intelligence, the conditions under which these genes are useful, and the constraints governing how they can be combined,” but they believe that their framework provides a useful start and gives managers and other institutional decisionmakers looking to take advantage of collective intelligence activities the ability to “systematically consider many possible combinations of answers to questions about Who, Why, What, and How.”
Mulgan, Geoff. “True Collective Intelligence? A Sketch of a Possible New Field.” Philosophy & Technology 27, no. 1. March 2014. http://bit.ly/1p3YSdd.
- In this paper, Mulgan explores the concept of a collective intelligence, a “much talked about but…very underdeveloped” field.
- With a particular focus on health knowledge, Mulgan “sets out some of the potential theoretical building blocks, suggests an experimental and research agenda, shows how it could be analysed within an organisation or business sector and points to possible intellectual barriers to progress.”
- He concludes that the “central message that comes from observing real intelligence is that intelligence has to be for something,” and that “turning this simple insight – the stuff of so many science fiction stories – into new theories, new technologies and new applications looks set to be one of the most exciting prospects of the next few years and may help give shape to a new discipline that helps us to be collectively intelligent about our own collective intelligence.”
Sauermann, Henry and Chiara Franzoni. “Participation Dynamics in Crowd-Based Knowledge Production: The Scope and Sustainability of Interest-Based Motivation.” SSRN Working Papers Series. November 28, 2013. http://bit.ly/1o6YB7f.
- In this paper, Sauremann and Franzoni explore the issue of interest-based motivation in crowd-based knowledge production – in particular the use of the crowd science platform Zooniverse – by drawing on “research in psychology to discuss important static and dynamic features of interest and deriv[ing] a number of research questions.”
- The authors find that interest-based motivation is often tied to a “particular object (e.g., task, project, topic)” not based on a “general trait of the person or a general characteristic of the object.” As such, they find that “most members of the installed base of users on the platform do not sign up for multiple projects, and most of those who try out a project do not return.”
- They conclude that “interest can be a powerful motivator of individuals’ contributions to crowd-based knowledge production…However, both the scope and sustainability of this interest appear to be rather limited for the large majority of contributors…At the same time, some individuals show a strong and more enduring interest to participate both within and across projects, and these contributors are ultimately responsible for much of what crowd science projects are able to accomplish.”
Schmitt-Sands, Catherine E. and Richard J. Smith. “Prospects for Online Crowdsourcing of Social Science Research Tasks: A Case Study Using Amazon Mechanical Turk.” SSRN Working Papers Series. January 9, 2014. http://bit.ly/1ugaYja.
- In this paper, the authors describe an experiment involving the nascent use of Amazon’s Mechanical Turk as a social science research tool. “While researchers have used crowdsourcing to find research subjects or classify texts, [they] used Mechanical Turk to conduct a policy scan of local government websites.”
- Schmitt-Sands and Smith found that “crowdsourcing worked well for conducting an online policy program and scan.” The microtasked workers were helpful in screening out local governments that either did not have websites or did not have the types of policies and services for which the researchers were looking. However, “if the task is complicated such that it requires ongoing supervision, then crowdsourcing is not the best solution.”
Shirky, Clay. Here Comes Everybody: The Power of Organizing Without Organizations. New York: Penguin Press, 2008. https://bit.ly/2QysNif.
- In this book, Shirky explores our current era in which, “For the first time in history, the tools for cooperating on a global scale are not solely in the hands of governments or institutions. The spread of the Internet and mobile phones are changing how people come together and get things done.”
- Discussing Wikipedia’s “spontaneous division of labor,” Shirky argues that the process is like, “the process is more like creating a coral reef, the sum of millions of individual actions, than creating a car. And the key to creating those individual actions is to hand as much freedom as possible to the average user.”
Silvertown, Jonathan. “A New Dawn for Citizen Science.” Trends in Ecology & Evolution 24, no. 9 (September 2009): 467–471. http://bit.ly/1iha6CR.
- This article discusses the move from “Science for the people,” a slogan adopted by activists in the 1970s to “’Science by the people,’ which is “a more inclusive aim, and is becoming a distinctly 21st century phenomenon.”
- Silvertown identifies three factors that are responsible for the explosion of activity in citizen science, each of which could be similarly related to the crowdsourcing of skills by governing institutions:
- “First is the existence of easily available technical tools for disseminating information about products and gathering data from the public.
- A second factor driving the growth of citizen science is the increasing realisation among professional scientists that the public represent a free source of labour, skills, computational power and even finance.
- Third, citizen science is likely to benefit from the condition that research funders such as the National Science Foundation in the USA and the Natural Environment Research Council in the UK now impose upon every grantholder to undertake project-related science outreach. This is outreach as a form of public accountability.”
Szkuta, Katarzyna, Roberto Pizzicannella, David Osimo. “Collaborative approaches to public sector innovation: A scoping study.” Telecommunications Policy. 2014. http://bit.ly/1oBg9GY.
- In this article, the authors explore cases where government collaboratively delivers online public services, with a focus on success factors and “incentives for services providers, citizens as users and public administration.”
- The authors focus on six types of collaborative governance projects:
- Services initiated by government built on government data;
- Services initiated by government and making use of citizens’ data;
- Services initiated by civil society built on open government data;
- Collaborative e-government services; and
- Services run by civil society and based on citizen data.
- The cases explored “are all designed in the way that effectively harnesses the citizens’ potential. Services susceptible to collaboration are those that require computing efforts, i.e. many non-complicated tasks (e.g. citizen science projects – Zooniverse) or citizens’ free time in general (e.g. time banks). Those services also profit from unique citizens’ skills and their propensity to share their competencies.”
The Field Guide to Data Science
Booz Allen Hamilton: “Data Science is the competitive advantage of the future for organizations interested in turning their data into a product through analytics. Industries from health, to national security, to finance, to energy can be improved by creating better data analytics through Data Science. The winners and the losers in the emerging data economy are going to be determined by their Data Science teams.
Booz Allen Hamilton created The Field Guide to Data Science to help organizations of all types and missions understand how to make use of data as a resource. The text spells out what Data Science is and why it matters to organizations as well as how to create Data Science teams. Along the way, our team of experts provides field-tested approaches, personal tips and tricks, and real-life case studies. Senior leaders will walk away with a deeper understanding of the concepts at the heart of Data Science. Practitioners will add to their toolboxes.
In The Field Guide to Data Science, our Booz Allen experts provide their insights in the following areas:
- Start Here for the Basics provides an introduction to Data Science, including what makes Data Science unique from other analysis approaches. We will help you understand Data Science maturity within an organization and how to create a robust Data Science capability.
- Take Off the Training Wheels is the practitioners guide to Data Science. We share our established processes, including our approach to decomposing complex Data Science problems, the Fractal Analytic Model. We conclude with the Guide to Analytic Selection to help you select the right analytic techniques to conquer your toughest challenges.
- Life in the Trenches gives a first hand account of life as a Data Scientist. We share insights on a variety of Data Science topics through illustrative case studies. We provide tips and tricks from our own experiences on these real-life analytic challenges.
- Putting it All Together highlights our successes creating Data Science solutions for our clients. It follows several projects from data to insights and see the impact Data Science can have on your organization…”
The Emerging Science of Computational Anthropology
Emerging Technology From the arXiv: The increasing availability of big data from mobile phones and location-based apps has triggered a revolution in the understanding of human mobility patterns. This data shows the ebb and flow of the daily commute in and out of cities, the pattern of travel around the world and even how disease can spread through cities via their transport systems.
So there is considerable interest in looking more closely at human mobility patterns to see just how well it can be predicted and how these predictions might be used in everything from disease control and city planning to traffic forecasting and location-based advertising.
Today we get an insight into the kind of detailed that is possible thanks to the work of Zimo Yang at Microsoft research in Beijing and a few pals. These guys start with the hypothesis that people who live in a city have a pattern of mobility that is significantly different from those who are merely visiting. By dividing travelers into locals and non-locals, their ability to predict where people are likely to visit dramatically improves.
Zimo and co begin with data from a Chinese location-based social network called Jiepang.com. This is similar to Foursquare in the US. It allows users to record the places they visit and to connect with friends at these locations and to find others with similar interests.
The data points are known as check-ins and the team downloaded more than 1.3 million of them from five big cities in China: Beijing, Shanghai, Nanjing, Chengdu and Hong Kong. They then used 90 per cent of the data to train their algorithms and the remaining 10 per cent to test it. The Jiapang data includes the users’ hometowns so it’s easy to see whether an individual is checking in in their own city or somewhere else.
The question that Zimo and co want to answer is the following: given a particular user and their current location, where are they most likely to visit in the near future? In practice, that means analysing the user’s data, such as their hometown and the locations recently visited, and coming up with a list of other locations that they are likely to visit based on the type of people who visited these locations in the past.
Zimo and co used their training dataset to learn the mobility pattern of locals and non-locals and the popularity of the locations they visited. The team then applied this to the test dataset to see whether their algorithm was able to predict where locals and non-locals were likely to visit.
They found that their best results came from analysing the pattern of behaviour of a particular individual and estimating the extent to which this person behaves like a local. That produced a weighting called the indigenization coefficient that the researchers could then use to determine the mobility patterns this person was likely to follow in future.
In fact, Zimo and co say they can spot non-locals in this way without even knowing their home location. “Because non-natives tend to visit popular locations, like the Imperial Palace in Beijing and the Bund in Shanghai, while natives usually check in around their homes and workplaces,” they add.
The team say this approach considerably outperforms the mixed algorithms that use only individual visiting history and location popularity. “To our surprise, a hybrid algorithm weighted by the indigenization coefficients outperforms the mixed algorithm accounting for additional demographical information.”
It’s easy to imagine how such an algorithm might be useful for businesses who want to target certain types of travelers or local people. But there is a more interesting application too.
Zimo and co say that it is possible to monitor the way an individual’s mobility patterns change over time. So if a person moves to a new city, it should be possible to see how long it takes them to settle in.
One way of measuring this is in their mobility patterns: whether they are more like those of a local or a non-local. “We may be able to estimate whether a non-native person will behave like a native person after a time period and if so, how long in average a person takes to become a native-like one,” say Zimo and co.
That could have a fascinating impact on the way anthropologists study migration and the way immigrants become part of a local community. This is computational anthropology a science that is clearly in its early stages but one that has huge potential for the future.”
Ref: arxiv.org/abs/1405.7769 : Indigenization of Urban Mobility
Big Data, new epistemologies and paradigm shifts
Paper by Rob Kitchin in the Journal “Big Data and Society”: This article examines how the availability of Big Data, coupled with new data analytics, challenges established epistemologies across the sciences, social sciences and humanities, and assesses the extent to which they are engendering paradigm shifts across multiple disciplines. In particular, it critically explores new forms of empiricism that declare ‘the end of theory’, the creation of data-driven rather than knowledge-driven science, and the development of digital humanities and computational social sciences that propose radically different ways to make sense of culture, history, economy and society. It is argued that: (1) Big Data and new data analytics are disruptive innovations which are reconfiguring in many instances how research is conducted; and (2) there is an urgent need for wider critical reflection within the academy on the epistemological implications of the unfolding data revolution, a task that has barely begun to be tackled despite the rapid changes in research practices presently taking place. After critically reviewing emerging epistemological positions, it is contended that a potentially fruitful approach would be the development of a situated, reflexive and contextually nuanced epistemology”
OSTP’s Own Open Government Plan
: “The White House Office of Science and Technology Policy (OSTP) today released its 2014 Open Government Plan. The OSTP plan highlights three flagship efforts as well as the team’s ongoing work to embed the open government principles of transparency, participation, and collaboration into its activities.
OSTP advises the President on the effects of science and technology on domestic and international affairs. The work of the office includes policy efforts encompassing science, environment, energy, national security, technology, and innovation. This plan builds off of the 2010 and 2012 Open Government Plans, updating progress on past initiatives and adding new subject areas based on 2014 guidance.
Agencies began releasing biennial Open Government Plans in 2010, with direction from the 2009 Open Government Directive. These plans serve as a roadmap for agency openness efforts, explaining existing practices and announcing new endeavors to be completed over the coming two years. Agencies build these plans in consultation with civil society stakeholders and the general public. Open government is a vital component of the President’s Management Agenda and our overall effort to ensure the government is expanding economic growth and opportunity for all Americans.
OSTP’s 2014 flagship efforts include:
- Access to Scientific Collections: OSTP is leading agencies in developing policies that will improve the management of and access to scientific collections that agencies own or support. Scientific collections are assemblies of physical objects that are valuable for research and education—including drilling cores from the ocean floor and glaciers, seeds, space rocks, cells, mineral samples, fossils, and more. Agency policies will help make scientific collections and information about scientific collections more transparent and accessible in the coming years.
- We the Geeks: We the Geeks Google+ Hangouts feature informal conversations with experts to highlight the future of science, technology, and innovation in the United States. Participants can join the conversation on Twitter by using the hashtag #WeTheGeeks and asking questions of the presenters throughout the hangout.
- “All Hands on Deck” on STEM Education: OSTP is helping lead President Obama’s commitment to an “all-hands-on-deck approach” to providing students with skills they need to excel in science, technology, engineering, and math (STEM). In support of this goal, OSTP is bringing together government, industry, non-profits, philanthropy, and others to expand STEM education engagement and awareness through events like the annual White House Science Fair and the upcoming White House Maker Faire.
OSTP looks forward to implementing the 2014 Open Government Plan over the coming two years to continue building on its strong tradition of transparency, participation, and collaboration—with and for the American people.”
Cataloging the World
New book on “Paul Otlet and the Birth of the Information Age”: “The dream of capturing and organizing knowledge is as old as history. From the archives of ancient Sumeria and the Library of Alexandria to the Library of Congress and Wikipedia, humanity has wrestled with the problem of harnessing its intellectual output. The timeless quest for wisdom has been as much about information storage and retrieval as creative genius.
In Cataloging the World, Alex Wright introduces us to a figure who stands out in the long line of thinkers and idealists who devoted themselves to the task. Beginning in the late nineteenth century, Paul Otlet, a librarian by training, worked at expanding the potential of the catalog card, the world’s first information chip. From there followed universal libraries and museums, connecting his native Belgium to the world by means of a vast intellectual enterprise that attempted to organize and code everything ever published. Forty years before the first personal computer and fifty years before the first browser, Otlet envisioned a network of “electric telescopes” that would allow people everywhere to search through books, newspapers, photographs, and recordings, all linked together in what he termed, in 1934, a réseau mondial–essentially, a worldwide web.
Otlet’s life achievement was the construction of the Mundaneum–a mechanical collective brain that would house and disseminate everything ever committed to paper. Filled with analog machines such as telegraphs and sorters, the Mundaneum–what some have called a “Steampunk version of hypertext”–was the embodiment of Otlet’s ambitions. It was also short-lived. By the time the Nazis, who were pilfering libraries across Europe to collect information they thought useful, carted away Otlet’s collection in 1940, the dream had ended. Broken, Otlet died in 1944.
Wright’s engaging intellectual history gives Otlet his due, restoring him to his proper place in the long continuum of visionaries and pioneers who have struggled to classify knowledge, from H.G. Wells and Melvil Dewey to Vannevar Bush, Ted Nelson, Tim Berners-Lee, and Steve Jobs. Wright shows that in the years since Otlet’s death the world has witnessed the emergence of a global network that has proved him right about the possibilities–and the perils–of networked information, and his legacy persists in our digital world today, captured for all time…”
CollaborativeScience.org: Sustaining Ecological Communities Through Citizen Science and Online Collaboration
David Mellor at CommonsLab: “In any endeavor, there can be a tradeoff between intimacy and impact. The same is true for science in general and citizen science in particular. Large projects with thousands of collaborators can have incredible impact and robust, global implications. On the other hand, locally based projects can foster close-knit ties that encourage collaboration and learning, but face an uphill battle when it comes to creating rigorous and broadly relevant investigations. Online collaboration has the potential to harness the strengths of both of these strategies if a space can be created that allows for the easy sharing of complex ideas and conservation strategies.
CollaborativeScience.org was created by researchers from five different universities to train Master Naturalists in ecology, scientific modeling and adaptive management, and then give these capable volunteers a space to put their training to work and create conservation plans in collaboration with researchers and land managers.
We are focusing on scientific modeling throughout this process because environmental managers and ecologists have been trained to intuitively create explanations based on a very large number of related observations. As new data are collected, these explanations are revised and are put to use in generating new, testable hypotheses. The modeling tools that we are providing to our volunteers allow them to formalize this scientific reasoning by adding information, sources and connections, then making predictions based on possible changes to the system. We integrate their projects into the well-established citizen science tools at CitSci.org and guide them through the creation of an adaptive management plan, a proven conservation project framework…”
Innovation And Inequality
Edited book on “Emerging Technologies in an Unequal World”: “Susan Cozzens, Dhanaraj Thakur, and the other co-authors ask how the benefits and costs of emerging technologies are distributed amongst different countries – some rich and some poor. Examining the case studies of five technologies across eight countries in Africa, Europe and the Americas, the book finds that the distributional dynamics around a given technology are influenced by the way entrepreneurs and others package the technology, how governments promote it and the existing local skills and capacity to use it. These factors create social and economic boundaries where the technology stops diffusing between and within countries. The book presents a series of recommendations for policy-makers and private sector actors to move emerging technologies beyond these boundaries and improve their distributional outcomes.
Offering a broad range of mature and relatively new emerging technologies from a diverse set of countries, the study will strongly appeal to policy-makers in science, technology and innovation policy. It will also benefit students and academics interested in innovation, science, technology and innovation policy, the economics of innovation, as well as the history and sociology of technology.
Full table of contents“
The Weird, Wild World of Citizen Science Is Already Here
David Lang in Wired: “Up and down the west coast of North America, countless numbers of starfish are dying. The affliction, known as Sea Star Wasting Syndrome, is already being called the biggest die-off of sea stars in recorded history, and we’re still in the dark as to what’s causing it or what it means. It remains an unsolved scientific mystery. The situation is also shaping up as a case study of an unsung scientific opportunity: the rise of citizen science and exploration.
The sea star condition was first noticed by Laura James, a diver and underwater videographer based in Seattle. As they began washing up on the shore near her home with lesions and missing limbs, she became concerned and notified scientists. Similar sightings started cropping up all along the West Coast, with gruesome descriptions of sea stars that were disintegrating in a matter of days, and populations that had been decimated. As scientists race to understand what’s happening, they’ve enlisted the help of amateurs like James, to move faster. Pete Raimondi’s lab at UC Santa Cruz has created the Sea Star Wasting Map, the baseline for monitoring the issue, to capture the diverse set of contributors and collaborators.
The map is one of many new models of citizen-powered science–a blend of amateurs and professionals, looking and learning together–that are beginning to emerge. Just this week, NASA endorsed a group of amateur astronomers to attempt to rescue a vintage U.S. spacecraft. NASA doesn’t have the money to do it, and this passionate group of citizen scientists can handle it.
Unfortunately, the term “citizen science” is terrible. It’s vague enough to be confusing, yet specific enough to seem exclusive. It’s too bad, too, because the idea of citizen science is thrilling. I love the notion that I can participate in the expanding pool of human knowledge and understanding, even though the extent of my formal science education is a high school biology class. To me, it seemed a genuine invitation to be curious. A safe haven for beginners. A license to explore.
Not everyone shares my romantic perspective, though. If you ask a university researcher, they’re likely to explain citizen science as a way for the public to contribute data points to larger, professionally run studies, like participating in the galaxy-spotting website Zooniverse or taking part in the annual Christmas Bird Count with the Audubon Society. It’s a model on the scientific fringes; using broad participation to fill the gaps in necessary data.
There’s power in this diffuse definition, though, as long as new interpretations are welcomed and encouraged. By inviting and inspiring people to ask their own questions, citizen science can become much more than a way of measuring bird populations. From the drone-wielding conservationists in South Africa to the makeshift biolabs in Brooklyn, a widening circle of participants are wearing the amateur badge with honor. And all of these groups–the makers, the scientists, the hobbyists–are converging to create a new model for discovery. In other words, the maker movement and the traditional science world are on a collision course.
To understand the intersection, it helps to know where each of those groups is coming from….”