A.I. Here, There, Everywhere


Craig S. Smith at the New York Times: “I wake up in the middle of the night. It’s cold.

“Hey, Google, what’s the temperature in Zone 2,” I say into the darkness. A disembodied voice responds: “The temperature in Zone 2 is 52 degrees.” “Set the heat to 68,” I say, and then I ask the gods of artificial intelligence to turn on the light.

Many of us already live with A.I., an array of unseen algorithms that control our Internet-connected devices, from smartphones to security cameras and cars that heat the seats before you’ve even stepped out of the house on a frigid morning.

But, while we’ve seen the A.I. sun, we have yet to see it truly shine.

Researchers liken the current state of the technology to cellphones of the 1990s: useful, but crude and cumbersome. They are working on distilling the largest, most powerful machine-learning models into lightweight software that can run on “the edge,” meaning small devices such as kitchen appliances or wearables. Our lives will gradually be interwoven with brilliant threads of A.I.

Our interactions with the technology will become increasingly personalized. Chatbots, for example, can be clumsy and frustrating today, but they will eventually become truly conversational, learning our habits and personalities and even develop personalities of their own. But don’t worry, the fever dreams of superintelligent machines taking over, like HAL in “2001: A Space Odyssey,” will remain science fiction for a long time to come; consciousness, self-awareness and free will in machines are far beyond the capabilities of science today.

Privacy remains an issue, because artificial intelligence requires data to learn patterns and make decisions. But researchers are developing methods to use our data without actually seeing it — so-called federated learning, for example — or encrypt it in ways that currently can’t be hacked….(More)”

Regulation of Algorithmic Tools in the United States


Paper by Christopher S. Yoo and Alicia Lai: “Policymakers in the United States have just begun to address regulation of artificial intelligence technologies in recent years, gaining momentum through calls for additional research funding, piece-meal guidance, proposals, and legislation at all levels of government. This Article provides an overview of high-level federal initiatives for general artificial intelligence (AI) applications set forth by the U.S. president and responding agencies, early indications from the incoming Biden Administration, targeted federal initiatives for sector-specific AI applications, pending federal legislative proposals, and state and local initiatives. The regulation of the algorithmic ecosystem will continue to evolve as the United States continues to search for the right balance between ensuring public safety and transparency and promoting innovation and competitiveness on the global stage….(More)”.

A definition, benchmark and database of AI for social good initiatives


Paper by Josh Cowls, Andreas Tsamados, Mariarosaria Taddeo & Luciano Floridi: “Initiatives relying on artificial intelligence (AI) to deliver socially beneficial outcomes—AI for social good (AI4SG)—are on the rise. However, existing attempts to understand and foster AI4SG initiatives have so far been limited by the lack of normative analyses and a shortage of empirical evidence. In this Perspective, we address these limitations by providing a definition of AI4SG and by advocating the use of the United Nations’ Sustainable Development Goals (SDGs) as a benchmark for tracing the scope and spread of AI4SG. We introduce a database of AI4SG projects gathered using this benchmark, and discuss several key insights, including the extent to which different SDGs are being addressed. This analysis makes possible the identification of pressing problems that, if left unaddressed, risk hampering the effectiveness of AI4SG initiatives….(More)”.

Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence


Book by Kate Crawford: “What happens when artificial intelligence saturates political life and depletes the planet? How is AI shaping our understanding of ourselves and our societies? In this book Kate Crawford reveals how this planetary network is fueling a shift toward undemocratic governance and increased inequality. Drawing on more than a decade of research, award-winning science, and technology, Crawford reveals how AI is a technology of extraction: from the energy and minerals needed to build and sustain its infrastructure, to the exploited workers behind “automated” services, to the data AI collects from us. 

Rather than taking a narrow focus on code and algorithms, Crawford offers us a political and a material perspective on what it takes to make artificial intelligence and where it goes wrong. While technical systems present a veneer of objectivity, they are always systems of power. This is an urgent account of what is at stake as technology companies use artificial intelligence to reshape the world…(More)”.

AI Ethics Needs Good Data


Paper by Angela Daly, S Kate Devitt, and Monique Mann: “In this chapter we argue that discourses on AI must transcend the language of ‘ethics’ and engage with power and political economy in order to constitute ‘Good Data’. In particular, we must move beyond the depoliticised language of ‘ethics’ currently deployed (Wagner 2018) in determining whether AI is ‘good’ given the limitations of ethics as a frame through which AI issues can be viewed. In order to circumvent these limits, we use instead the language and conceptualisation of ‘Good Data’, as a more expansive term to elucidate the values, rights and interests at stake when it comes to AI’s development and deployment, as well as that of other digital technologies.

Good Data considerations move beyond recurring themes of data protection/privacy and the FAT (fairness, transparency and accountability) movement to include explicit political economy critiques of power. Instead of yet more ethics principles (that tend to say the same or similar things anyway), we offer four ‘pillars’ on which Good Data AI can be built: community, rights, usability and politics. Overall we view AI’s ‘goodness’ as an explicly political (economy) question of power and one which is always related to the degree which AI is created and used to increase the wellbeing of society and especially to increase the power of the most marginalized and disenfranchised. We offer recommendations and remedies towards implementing ‘better’ approaches towards AI. Our strategies enable a different (but complementary) kind of evaluation of AI as part of the broader socio-technical systems in which AI is built and deployed….(More)”.

Towards Algorithm Auditing: A Survey on Managing Legal, Ethical and Technological Risks of AI, ML and Associated Algorithms


Paper by Adriano Koshiyama: “Business reliance on algorithms are becoming ubiquitous, and companies are increasingly concerned about their algorithms causing major financial or reputational damage. High-profile cases include VW’s Dieselgate scandal with fines worth of $34.69B, Knight Capital’s bankruptcy (~$450M) by a glitch in its algorithmic trading system, and Amazon’s AI recruiting tool being scrapped after showing bias against women. In response, governments are legislating and imposing bans, regulators fining companies, and the Judiciary discussing potentially making algorithms artificial “persons” in Law.

Soon there will be ‘billions’ of algorithms making decisions with minimal human intervention; from autonomous vehicles and finance, to medical treatment, employment, and legal decisions. Indeed, scaling to problems beyond the human is a major point of using such algorithms in the first place. As with Financial Audit, governments, business and society will require Algorithm Audit; formal assurance that algorithms are legal, ethical and safe. A new industry is envisaged: Auditing and Assurance of Algorithms (cf. Data privacy), with the remit to professionalize and industrialize AI, ML and associated algorithms.

The stakeholders range from those working on policy and regulation, to industry practitioners and developers. We also anticipate the nature and scope of the auditing levels and framework presented will inform those interested in systems of governance and compliance to regulation/standards. Our goal in this paper is to survey the key areas necessary to perform auditing and assurance, and instigate the debate in this novel area of research and practice….(More)”.

Practical Fairness


Book by Aileen Nielsen: “Fairness is becoming a paramount consideration for data scientists. Mounting evidence indicates that the widespread deployment of machine learning and AI in business and government is reproducing the same biases we’re trying to fight in the real world. But what does fairness mean when it comes to code? This practical book covers basic concerns related to data security and privacy to help data and AI professionals use code that’s fair and free of bias.

Many realistic best practices are emerging at all steps along the data pipeline today, from data selection and preprocessing to closed model audits. Author Aileen Nielsen guides you through technical, legal, and ethical aspects of making code fair and secure, while highlighting up-to-date academic research and ongoing legal developments related to fairness and algorithms.

  • Identify potential bias and discrimination in data science models
  • Use preventive measures to minimize bias when developing data modeling pipelines
  • Understand what data pipeline components implicate security and privacy concerns
  • Write data processing and modeling code that implements best practices for fairness
  • Recognize the complex interrelationships between fairness, privacy, and data security created by the use of machine learning models
  • Apply normative and legal concepts relevant to evaluating the fairness of machine learning models…(More)”.

A new intelligence paradigm: how the emerging use of technology can achieve sustainable development (if done responsibly)


Peter Addo and Stefaan G. Verhulst in The Conversation: “….This month, the GovLab and the French Development Agency (AFD) released a report looking at precisely these possibilities. “Emerging Uses of Technology for Development: A New Intelligence Paradigm” examines how development practitioners are experimenting with emerging forms of technology to advance development goals. It considers when practitioners might turn to these tools and provides some recommendations to guide their application.

Broadly, the report concludes that experiments with new technologies in development have produced value and offer opportunities for progress. These technologies – which include data intelligence, artificial intelligence, collective intelligence, and embodied intelligence tools – are associated with different prospective benefits and risks. It is essential they be informed by design principles and practical considerations.

Four intelligences

The report derives its conclusions from an analysis of dozens of projects around Africa, including Senegal, Tanzania, Uganda. Linking practice and theory, this approach allows us to construct a conceptual framework that helps development practitioners allocate resources and make key decisions based on their specific circumstances. We call this framework the “four intelligences” paradigm; it offers a way to make sense of how new and emerging technologies intersect with the development field….(More)” (Full Report).

Author provided, CC BY

Facial Recognition in the Public Sector: The Policy Landscape


Brief by Rashida Richardson: “Facial-recognition technology is increasingly common throughout society. We can unlock our phones with our faces, smart doorbells let us know who is outside our home, and sentiment analysis allows potential employers to screen interviewees for desirable traits. In the public sector, facial recognition is now in widespread use—in schools, public housing, public transportation, and other areas. Some of the most worrying applications of the technology are in law enforcement, with police departments and other bodies in the United States, Europe, and elsewhere around the world using public and private databases of photos to identify criminal suspects and conduct real-time surveillance of public spaces.

Despite the widespread use of facial recognition and the concerns it presents for privacy and civil liberties, this technology is only subject to a patchwork of laws and regulations. Certain jurisdictions have imposed bans on its use while others have implemented more targeted interventions. In some cases, laws and regulations written to address other technologies may apply to facial recognition as well.

This brief first surveys how facial-recognition technology has been deployed in the public sector around the world. It then reviews the spectrum of proposed and pending laws and regulations that seek to mitigate or address human and civil rights concerns associated with government use of facial recognition, including:

  • moratoriums and bans
  • standards, limitations, and requirements regarding databases or data sources
  • data regulations
  • oversight and use requirements
  • government commissions, consultations, and studies…(More)”

Beyond the promise: implementing ethical AI


Ray Eitel-Porter at AI and Ethics: “Artificial Intelligence (AI) applications can and do have unintended negative consequences for businesses if not implemented with care. Specifically, faulty or biased AI applications risk compliance and governance breaches and damage to the corporate brand. These issues commonly arise from a number of pitfalls associated with AI development, which include rushed development, a lack of technical understanding, and improper quality assurance, among other factors. To mitigate these risks, a growing number of organisations are working on ethical AI principles and frameworks. However, ethical AI principles alone are not sufficient for ensuring responsible AI use in enterprises. Businesses also require strong, mandated governance controls including tools for managing processes and creating associated audit trails to enforce their principles. Businesses that implement strong governance frameworks, overseen by an ethics board and strengthened with appropriate training, will reduce the risks associated with AI. When applied to AI modelling, the governance will also make it easier for businesses to bring their AI deployments to scale….(More)”.