Definitions, digital, and distance: on AI and policymaking


Article by Gavin Freeguard: “Our first question is less, ‘to what extent can AI improve public policymaking?’, but ‘what is currently wrong with policymaking?’, and then, ‘is AI able to help?’.

Ask those in and around policymaking about the problems and you’ll get a list likely to include:

  • the practice not having changed in decades (or centuries)
  • it being an opaque ‘dark art’ with little transparency
  • defaulting to easily accessible stakeholders and evidence
  • a separation between policy and delivery (and digital and other disciplines), and failure to recognise the need for agility and feedback as opposed to distinct stages
  • the challenges in measuring or evaluating the impact of policy interventions and understanding what works, with a lack of awareness, let alone sharing, of case studies elsewhere
  • difficulties in sharing data
  • the siloed nature of government complicating cross-departmental working
  • policy asks often being dictated by politics, with electoral cycles leading to short-termism, ministerial churn changing priorities and personal style, events prompting rushed reactions, or political priorities dictating ‘policy-based evidence making’
  • a rush to answers before understanding the problem
  • definitional issues about what policy actually is making it hard to get a hold of or develop professional expertise.  

If we’re defining ‘policy’ and the problem, we also need to define ‘AI’, or at least acknowledge that we are not only talking about new, shiny generative AI, but a world of other techniques for automating processes and analysing data that have been used in government for years.

So is ‘AI’ able to help? It could support us to make better use of a wider range of data more quickly; but it could privilege that which is easier to measure, strip data of vital context, and embed biases and historical assumptions. It could ‘make decisions more transparent (perhaps through capturing digital records of the process behind them, or by visualising the data that underpins a decision)’; or make them more opaque with ‘black-box’ algorithms, and distract from overcoming the very human cultural problems around greater openness. It could help synthesise submissions or generate ideas to brainstorm; or fail to compensate for deficiencies in underlying government knowledge infrastructure, and generate gibberish. It could be a tempting silver bullet for better policy; or it could paper over the cracks, while underlying technical, organisational and cultural plumbing goes unfixed. It could have real value in some areas, or cause harms in others…(More)”.

We finally have a definition for open-source AI


Article by Rhiannon Williams and James O’Donnell: “Open-source AI is everywhere right now. The problem is, no one agrees on what it actually is. Now we may finally have an answer. The Open Source Initiative (OSI), the self-appointed arbiters of what it means to be open source, has released a new definition, which it hopes will help lawmakers develop regulations to protect consumers from AI risks. 

Though OSI has published much about what constitutes open-source technology in other fields, this marks its first attempt to define the term for AI models. It asked a 70-person group of researchers, lawyers, policymakers, and activists, as well as representatives from big tech companies like Meta, Google, and Amazon, to come up with the working definition. 

According to the group, an open-source AI system can be used for any purpose without the need to secure permission, and researchers should be able to inspect its components and study how the system works.

It should also be possible to modify the system for any purpose—including to change its output—and to share it with others to usewith or without modificationsfor any purpose. In addition, the standard attempts to define a level of transparency for a given model’s training data, source code, and weights. 

The previous lack of an open-source standard presented a problem…(More)”.

New AI standards group wants to make data scraping opt-in


Article by Kate Knibbs: “The first wave of major generative AI tools largely were trained on “publicly available” data—basically, anything and everything that could be scraped from the Internet. Now, sources of training data are increasingly restricting access and pushing for licensing agreements. With the hunt for additional data sources intensifying, new licensing startups have emerged to keep the source material flowing.

The Dataset Providers Alliance, a trade group formed this summer, wants to make the AI industry more standardized and fair. To that end, it has just released a position paper outlining its stances on major AI-related issues. The alliance is made up of seven AI licensing companies, including music copyright-management firm Rightsify, Japanese stock-photo marketplace Pixta, and generative-AI copyright-licensing startup Calliope Networks. (At least five new members will be announced in the fall.)

The DPA advocates for an opt-in system, meaning that data can be used only after consent is explicitly given by creators and rights holders. This represents a significant departure from the way most major AI companies operate. Some have developed their own opt-out systems, which put the burden on data owners to pull their work on a case-by-case basis. Others offer no opt-outs whatsoever…(More)”.

Building LLMs for the social sector: Emerging pain points


Blog by Edmund Korley: “…One of the sprint’s main tracks focused on using LLMs to enhance the impact and scale of chat services in the social sector.

Six organizations participated, with operations spanning Africa and India. Bandhu empowers India’s blue-collar workers and migrants by connecting them to jobs and affordable housing, helping them take control of their livelihoods and future stability. Digital Green enhances rural farmers’ agency with AI-driven insights to improve agricultural productivity and livelihoods. Jacaranda Health provides mothers in sub-Saharan Africa with essential information and support to improve maternal and newborn health outcomes. Kabakoo equips youth in Francophone Africa with digital skills, fostering self-reliance and economic independence. Noora Health teaches Indian patients and caregivers critical health skills, enhancing their ability to manage care. Udhyam provides micro-entrepreneurs’ with education, mentorship, and financial support to build sustainable businesses.

These organizations demonstrate diverse ways one can boost human agency: they help people in underserved communities take control of their lives, make more informed choices, and build better futures – and they are piloting AI interventions to scale these efforts…(More)”.

Frontier AI: double-edged sword for public sector


Article by Zeynep Engin: “The power of the latest AI technologies, often referred to as ‘frontier AI’, lies in their ability to automate decision-making by harnessing complex statistical insights from vast amounts of unstructured data, using models that surpass human understanding. The introduction of ChatGPT in late 2022 marked a new era for these technologies, making advanced AI models accessible to a wide range of users, a development poised to permanently reshape how our societies function.

From a public policy perspective, this capacity offers the optimistic potential to enable personalised services at scale, potentially revolutionising healthcare, education, local services, democratic processes, and justice, tailoring them to everyone’s unique needs in a digitally connected society. The ambition is to achieve better outcomes than humanity has managed so far without AI assistance. There is certainly a vast opportunity for improvement, given the current state of global inequity, environmental degradation, polarised societies, and other chronic challenges facing humanity.

However, it is crucial to temper this optimism with recognising the significant risks. In their current trajectories, these technologies are already starting to undermine hard-won democratic gains and civil rights. Integrating AI into public policy and decision-making processes risks exacerbating existing inequalities and unfairness, potentially leading to new, uncontrollable forms of discrimination at unprecedented speed and scale. The environmental impacts, both direct and indirect, could be catastrophic, while the rise of AI-powered personalised misinformation and behavioural manipulation is contributing to increasingly polarised societies.

Steering the direction of AI to be in the public interest requires a deeper understanding of its characteristics and behaviour. To imagine and design new approaches to public policy and decision-making, we first need a comprehensive understanding of what this remarkable technology offers and its potential implications…(More)”.

AI firms must play fair when they use academic data in training


Nature Editorial: “But others are worried about principles such as attribution, the currency by which science operates. Fair attribution is a condition of reuse under CC BY, a commonly used open-access copyright license. In jurisdictions such as the European Union and Japan, there are exemptions to copyright rules that cover factors such as attribution — for text and data mining in research using automated analysis of sources to find patterns, for example. Some scientists see LLM data-scraping for proprietary LLMs as going well beyond what these exemptions were intended to achieve.

In any case, attribution is impossible when a large commercial LLM uses millions of sources to generate a given output. But when developers create AI tools for use in science, a method known as retrieval-augmented generation could help. This technique doesn’t apportion credit to the data that trained the LLM, but does allow the model to cite papers that are relevant to its output, says Lucy Lu Wang, an AI researcher at the University of Washington in Seattle.

Giving researchers the ability to opt out of having their work used in LLM training could also ease their worries. Creators have this right under EU law, but it is tough to enforce in practice, says Yaniv Benhamou, who studies digital law and copyright at the University of Geneva. Firms are devising innovative ways to make it easier. Spawning, a start-up company in Minneapolis, Minnesota, has developed tools to allow creators to opt out of data scraping. Some developers are also getting on board: OpenAI’s Media Manager tool, for example, allows creators to specify how their works can be used by machine-learning algorithms…(More)”.

When A.I.’s Output Is a Threat to A.I. Itself


Article by Aatish Bhatia: “The internet is becoming awash in words and images generated by artificial intelligence.

Sam Altman, OpenAI’s chief executive, wrote in February that the company generated about 100 billion words per day — a million novels’ worth of text, every day, an unknown share of which finds its way onto the internet.

A.I.-generated text may show up as a restaurant review, a dating profile or a social media post. And it may show up as a news article, too: NewsGuard, a group that tracks online misinformation, recently identified over a thousand websites that churn out error-prone A.I.-generated news articles.

In reality, with no foolproof methods to detect this kind of content, much will simply remain undetected.

All this A.I.-generated information can make it harder for us to know what’s real. And it also poses a problem for A.I. companies. As they trawl the web for new data to train their next models on — an increasingly challenging task — they’re likely to ingest some of their own A.I.-generated content, creating an unintentional feedback loop in which what was once the output from one A.I. becomes the input for another.

In the long run, this cycle may pose a threat to A.I. itself. Research has shown that when generative A.I. is trained on a lot of its own output, it can get a lot worse.

Here’s a simple illustration of what happens when an A.I. system is trained on its own output, over and over again:

This is part of a data set of 60,000 handwritten digits.

When we trained an A.I. to mimic those digits, its output looked like this.

This new set was made by an A.I. trained on the previous A.I.-generated digits. What happens if this process continues?

After 20 generations of training new A.I.s on their predecessors’ output, the digits blur and start to erode.

After 30 generations, they converge into a single shape.

While this is a simplified example, it illustrates a problem on the horizon.

Imagine a medical-advice chatbot that lists fewer diseases that match your symptoms, because it was trained on a narrower spectrum of medical knowledge generated by previous chatbots. Or an A.I. history tutor that ingests A.I.-generated propaganda and can no longer separate fact from fiction…(More)”.

Policy for responsible use of AI in government


Policy by the Australian Government: “The Policy for the responsible use of AI in government ensures that government plays a leadership role in embracing AI for the benefit of Australians while ensuring its safe, ethical and responsible use, in line with community expectations. The policy:

  • provides a unified approach for government to engage with AI confidently, safely and responsibly, and realise its benefits
  • aims to strengthen public trust in government’s use of AI by providing enhanced transparency, governance and risk assurance
  • aims to embed a forward leaning, adaptive approach for government’s use of AI that is designed to evolve and develop over time…(More)”.

Relational ethics in health care automation


Paper by Frances Shaw and Anthony McCosker: “Despite the transformative potential of automation and clinical decision support technology in health care, there is growing urgency for more nuanced approaches to ethics. Relational ethics is an approach that can guide the responsible use of a range of automated decision-making systems including the use of generative artificial intelligence and large language models as they affect health care relationships. 

There is an urgent need for sector-wide training and scrutiny regarding the effects of automation using relational ethics touchstones, such as patient-centred health care, informed consent, patient autonomy, shared decision-making, empathy and the politics of care.

The purpose of this review is to offer a provocation for health care practitioners, managers and policy makers to consider the use automated tools in practice settings and examine how these tools might affect relationships and hence care outcomes…(More)”.

This is AI’s brain on AI


Article by Alison Snyder Data to train AI models increasingly comes from other AI models in the form of synthetic data, which can fill in chatbots’ knowledge gaps but also destabilize them.

The big picture: As AI models expand in size, their need for data becomes insatiable — but high quality human-made data is costly, and growing restrictions on the text, images and other kinds of data freely available on the web are driving the technology’s developers toward machine-produced alternatives.

State of play: AI-generated data has been used for years to supplement data in some fields, including medical imaging and computer vision, that use proprietary or private data.

  • But chatbots are trained on public data collected from across the internet that is increasingly being restricted — while at the same time, the web is expected to be flooded with AI-generated content.

Those constraints and the decreasing cost of generating synthetic data are spurring companies to use AI-generated data to help train their models.

  • Meta, Google, Anthropic and others are using synthetic data — alongside human-generated data — to help train the AI models that power their chatbots.
  • Google DeepMind’s new AlphaGeometry 2 system that can solve math Olympiad problems is trained from scratch on synthetic data…(More)”