Paper by Merveille Koissi Savi et al: “During the COVID-19 pandemic, the use of mobile phone data for monitoring human mobility patterns has become increasingly common, both to study the impact of travel restrictions on population movement and epidemiological modeling. Despite the importance of these data, the use of location information to guide public policy can raise issues of privacy and ethical use. Studies have shown that simple aggregation does not protect the privacy of an individual, and there are no universal standards for aggregation that guarantee anonymity. Newer methods, such as differential privacy, can provide statistically verifiable protection against identifiability but have been largely untested as inputs for compartment models used in infectious disease epidemiology. Our study examines the application of differential privacy as an anonymisation tool in epidemiological models, studying the impact of adding quantifiable statistical noise to mobile phone-based location data on the bias of ten common epidemiological metrics. We find that many epidemiological metrics are preserved and remain close to their non-private values when the true noise state is less than 20, in a count transition matrix, which corresponds to a privacy-less parameter ϵ = 0.05 per release. We show that differential privacy offers a robust approach to preserving individual privacy in mobility data while providing useful population-level insights for public health. Importantly, we have built a modular software pipeline to facilitate the replication and expansion of our framework…(More)”.
Governing Urban Data for the Public Interest
Report by The New Hanse: “…This report represents the culmination of our efforts and offers actionable guidelines for European cities seeking to harness the power of data for the public good.
The key recommendations outlined in the report are:
1. Shift the Paradigm towards Democratic Control of Data: Advocate for a policy that defaults to making urban data accessible, requiring private data holders to share in the public interest.
2. Provide Legal Clarity in a Dynamic Environment: Address legal uncertainties by balancing privacy and confidentiality needs with the public interest in data accessibility, working collaboratively with relevant authorities at national and EU level.
3. Build a Data Commons Repository of Use cases: Streamline data sharing efforts by establishing a standardised use case repository with common technical frameworks, procedures, and contracts.
4. Set up an Urban Data Intermediary for the Public Interest: Institutionalise data sharing, by building urban data intermediaries to address complexities, following principles of public purpose, transparency, and accountability.
5. Learning from the Hamburg Experiment and Scale it across Europe: Embrace experimentation as a vital step, even if outcomes are uncertain, to adapt processes for future innovations. Experiments at the local level can inform policy and scale nationally and across Europe…(More)”.
Data collaboration to enable the EU Green Deal
Article by Justine Gangneux: “In the fight against climate change, local authorities are increasingly turning to cross-sectoral data sharing as a game-changing strategy.
This collaborative approach empowers cities and communities to harness a wealth of data from diverse sources, enabling them to pinpoint emission hotspots, tailor policies for maximum impact, and allocate resources wisely.
Data can also strengthen climate resilience by engaging local communities and facilitating real-time progress tracking…
In recent years, more and more local data initiatives aimed at tackling climate change have emerged, spanning from urban planning to mobility, adaptation and energy management.
Such is the case of Porto’s CityCatalyst – the project put five demonstrators in place to showcase smart cities infrastructure and develop data standards and models, contributing to the efficient and integrated management of urban flows…
In Latvia, Riga is also exploring data solutions such as visualisations, aggregation or analytics, as part of the Positive Energy District strategy. Driven by the national Energy Efficiency Law, the city is developing a project to monitor energy consumption based on building utility use data (heat, electricity, gas, or water), customer and billing data, and Internet of Things smart metre data from individual buildings…
As these examples show, it is not just public data that holds the key; private sector data, from utilities as energy or water, to telecoms, offers cities valuable insights in their efforts to tackle climate change…(More)”.
Facilitating Data Flows through Data Collaboratives
A Practical Guide “to Designing Valuable, Accessible, and Responsible Data Collaboratives” by Uma Kalkar, Natalia González Alarcón, Arturo Muente Kunigami and Stefaan Verhulst: “Data is an indispensable asset in today’s society, but its production and sharing are subject to well-known market failures. Among these: neither economic nor academic markets efficiently reward costly data collection and quality assurance efforts; data providers cannot easily supervise the appropriate use of their data; and, correspondingly, users have weak incentives to pay for, acknowledge, and protect data that they receive from providers. Data collaboratives are a potential non-market solution to this problem, bringing together data providers and users to address these market failures. The governance frameworks for these collaboratives are varied and complex and their details are not widely known. This guide proposes a methodology and a set of common elements that facilitate experimentation and creation of collaborative environments. It offers guidance to governments on implementing effective data collaboratives as a means to promote data flows in Latin America and the Caribbean, harnessing their potential to design more effective services and improve public policies…(More)”.
The Good and Bad of Anticipating Migration
Article by Sara Marcucci, Stefaan Verhulst, María Esther Cervantes, Elena Wüllhorst: “This blog is the first in a series that will be published weekly, dedicated to exploring innovative anticipatory methods for migration policy. Over the coming weeks, we will delve into various aspects of these methods, delving into their value, challenges, taxonomy, and practical applications.
This first blog serves as an exploration of the value proposition and challenges inherent in innovative anticipatory methods for migration policy. We delve into the various reasons why these methods hold promise for informing more resilient, and proactive migration policies. These reasons include evidence-based policy development, enabling policymakers to ground their decisions in empirical evidence and future projections. Decision-takers, users, and practitioners can benefit from anticipatory methods for policy evaluation and adaptation, resource allocation, the identification of root causes, and the facilitation of humanitarian aid through early warning systems. However, it’s vital to acknowledge the challenges associated with the adoption and implementation of these methods, ranging from conceptual concerns such as fossilization, unfalsifiability, and the legitimacy of preemptive intervention, to practical issues like interdisciplinary collaboration, data availability and quality, capacity building, and stakeholder engagement. As we navigate through these complexities, we aim to shed light on the potential and limitations of anticipatory methods in the context of migration policy, setting the stage for deeper explorations in the coming blogs of this series…(More)”.
Towards a Holistic EU Data Governance
SITRA Publication: “The European Union’s ambitious data strategy aims to establish the EU as a leader in a data-driven society by creating a single market for data while fully respecting European policies on privacy, data protection, and competition law. To achieve the strategy’s bold aims, Europe needs more practical business cases where data flows across the organisations.
Reliable data sharing requires new technical, governance and business solutions. Data spaces address these needs by providing soft infrastructure to enable trusted and easy data flows across organisational boundaries.
Striking the right balance between regulation and innovation will be critical to creating a supportive environment for data-sharing business cases to flourish. In this working paper, we take an in-depth look at the governance issues surrounding data sharing and data spaces.
Data sharing requires trust. Trust can be facilitated by effective governance, meaning the rules for data sharing. These rules come from different arenas. The European Commission is establishing new regulations related to data, and member states also have their laws and authorities that oversee data-sharing activities. Ultimately, data spaces need local rules to enable interoperability and foster trust between participants. The governance framework for data spaces is called a rulebook, which codifies legal, business, technical, and ethical rules for data sharing.
The extensive discussions and interviews with experts reveal confusion in the field. People developing data sharing in practice or otherwise involved in data governance issues struggle to know who does what and who decides what. Data spaces also struggle to create internal governance structures in line with the regulatory environment. The interviews conducted for this study indicate that coordination at the member state level could play a decisive role in coordinating the EU-level strategy with concrete local data space initiatives.
The root cause of many of the pain points we identify is the problem of gaps, duplication and overlapping of roles between the different actors at all levels. To address these challenges and cultivate effective governance, a holistic data governance framework is proposed. This framework combines the existing approach of rulebooks with a new tool called the rolebook, which serves as a register of roles and bodies involved in data sharing. The rolebook aims to increase clarity and empower stakeholders at all levels to understand the current data governance structures.
In conclusion, effective governance is crucial for the success of the EU data strategy and the development of data spaces. By implementing the proposed holistic data governance framework, the EU can promote trust, balanced regulation and innovation, and support the growth of data spaces across sectors…(More)”.
The emergence of non-personal data markets
Report by the Think Tank of the European Parliament: “The European Commission’s Data Strategy aims to create a single market for data, open to data from across the world, where personal and non-personal data, including sensitive business data, are secure. The EU Regulation on the free flow of non-personal data allows non-personal data to be stored and processed anywhere in the EU without unjustified restrictions, with limited exceptions based on grounds of public security. The creation of multiple common sector-specific European data spaces aims to ensure Europe’s global competitiveness and data sovereignty. The Data Act proposed by the Commission aims to remove barriers to data access for both consumers and businesses and to establish common rules to govern the sharing of data generated using connected products or related services.
The aim of the study is to provide an in-depth, comprehensive, and issue-specific analysis of the emergence of non-personal data markets in Europe. The study seeks to identify the potential value of the non-personal data market, potential challenges and solutions, and the legislative/policy measures necessary to facilitate the further development of non-personal data markets. The study also ranks the main non-personal data markets by size and growth rate and provides a sector-specific analysis for the mobility and transport, energy, and manufacturing sectors…(More)”.
Four Questions to Guide Decision-Making for Data Sharing and Integration
Paper by the Actionable Intelligence for Social Policy Center: “This paper presents a Four Question Framework to guide data integration partners in building a strong governance and legal foundation to support ethical data use. While this framework was developed based on work in the United States that routinely integrates public data, it is meant to be a simple, digestible tool that can be adapted to any context. The framework was developed through a series of public deliberation workgroups and 15 years of field experience working with a diversity of data integration efforts across the United States.
The Four Questions – Is this legal? Is this ethical? Is this a good idea? How do we know (and who decides)? – should be considered within an established data governance framework and alongside core partners to determine whether and how to move forward when building an Integrated Data System (IDS) and also at each stage of a specific data project. We discuss these questions in depth, with a particular focus on the role of governance in establishing legal and ethical data use. In addition, we provide example data governance structures from two IDS sites and hypothetical scenarios that illustrate key considerations for the Four Question Framework.
A robust governance process is essential for determining whether data sharing and integration is legal, ethical, and a good idea within the local context. This process is iterative and as relational as it is technical, which means authentic collaboration across partners should be prioritized at each stage of a data use project. The Four Questions serve as a guide for determining whether to undertake data sharing and integration and should be regularly revisited throughout the life of a project…(More)”.
Can Google Trends predict asylum-seekers’ destination choices?
Paper by Haodong Qi & Tuba Bircan: “Google Trends (GT) collate the volumes of search keywords over time and by geographical location. Such data could, in theory, provide insights into people’s ex ante intentions to migrate, and hence be useful for predictive analysis of future migration. Empirically, however, the predictive power of GT is sensitive, it may vary depending on geographical context, the search keywords selected for analysis, as well as Google’s market share and its users’ characteristics and search behavior, among others. Unlike most previous studies attempting to demonstrate the benefit of using GT for forecasting migration flows, this article addresses a critical but less discussed issue: when GT cannot enhance the performances of migration models. Using EUROSTAT statistics on first-time asylum applications and a set of push-pull indicators gathered from various data sources, we train three classes of gravity models that are commonly used in the migration literature, and examine how the inclusion of GT may affect models’ abilities to predict refugees’ destination choices. The results suggest that the effects of including GT are highly contingent on the complexity of different models. Specifically, GT can only improve the performance of relatively simple models, but not of those augmented by flow Fixed-Effects or by Auto-Regressive effects. These findings call for a more comprehensive analysis of the strengths and limitations of using GT, as well as other digital trace data, in the context of modeling and forecasting migration. It is our hope that this nuanced perspective can spur further innovations in the field, and ultimately bring us closer to a comprehensive modeling framework of human migration…(More)”.
Essential requirements for the governance and management of data trusts, data repositories, and other data collaborations
Paper by Alison Paprica et al: “Around the world, many organisations are working on ways to increase the use, sharing, and reuse of person-level data for research, evaluation, planning, and innovation while ensuring that data are secure and privacy is protected. As a contribution to broader efforts to improve data governance and management, in 2020 members of our team published 12 minimum specification essential requirements (min specs) to provide practical guidance for organisations establishing or operating data trusts and other forms of data infrastructure… We convened an international team, consisting mostly of participants from Canada and the United States of America, to test and refine the original 12 min specs. Twenty-three (23) data-focused organisations and initiatives recorded the various ways they address the min specs. Sub-teams analysed the results, used the findings to make improvements to the min specs, and identified materials to support organisations/initiatives in addressing the min specs.
Analyses and discussion led to an updated set of 15 min specs covering five categories: one min spec for Legal, five for Governance, four for Management, two for Data Users, and three for Stakeholder & Public Engagement. Multiple changes were made to make the min specs language more technically complete and precise. The updated set of 15 min specs has been integrated into a Canadian national standard that, to our knowledge, is the first to include requirements for public engagement and Indigenous Data Sovereignty…(More)”.