Reimagining data for Open Source AI: A call to action


Report by Open Source Initiative: “Artificial intelligence (AI) is changing the world at a remarkable pace, with Open Source AI playing a pivotal role in shaping its trajectory. Yet, as AI advances, a fundamental challenge emerges: How do we create a data ecosystem that is not only robust but also equitable and sustainable?

The Open Source Initiative (OSI) and Open Future have taken a significant step toward addressing this challenge by releasing a white paper: “Data Governance in Open Source AI: Enabling Responsible and Systematic Access.” This document is the culmination of a global co-design process, enriched by insights from a vibrant two-day workshop held in Paris in October 2024….

The white paper offers a blueprint for a data ecosystem rooted in fairness, inclusivity and sustainability. It calls for two transformative shifts:

  1. From Open Data to Data Commons: Moving beyond the notion of unrestricted data to a model that balances openness with the rights and needs of all stakeholders.
  2. Broadening the stakeholder universe: Creating collaborative frameworks that unite communities, stewards and creators in equitable data-sharing practices.

To bring these shifts to life, the white paper delves into six critical focus areas:

  • Data preparation
  • Preference signaling and licensing
  • Data stewards and custodians
  • Environmental sustainability
  • Reciprocity and compensation
  • Policy interventions…(More)”

Towards Best Practices for Open Datasets for LLM Training


Paper by Stefan Baack et al: “Many AI companies are training their large language models (LLMs) on data without the permission of the copyright owners. The permissibility of doing so varies by jurisdiction: in countries like the EU and Japan, this is allowed under certain restrictions, while in the United States, the legal landscape is more ambiguous. Regardless of the legal status, concerns from creative producers have led to several high-profile copyright lawsuits, and the threat of litigation is commonly cited as a reason for the recent trend towards minimizing the information shared about training datasets by both corporate and public interest actors. This trend in limiting data information causes harm by hindering transparency, accountability, and innovation in the broader ecosystem by denying researchers, auditors, and impacted individuals access to the information needed to understand AI models.
While this could be mitigated by training language models on open access and public domain data, at the time of writing, there are no such models (trained at a meaningful scale) due to the substantial technical and sociological challenges in assembling the necessary corpus. These challenges include incomplete and unreliable metadata, the cost and complexity of digitizing physical records, and the diverse set of legal and technical skills required to ensure relevance and responsibility in a quickly changing landscape. Building towards a future where AI systems can be trained on openly licensed data that is responsibly curated and governed requires collaboration across legal, technical, and policy domains, along with investments in metadata standards, digitization, and fostering a culture of openness…(More)”.

Generative Artificial Intelligence and Open Data: Guidelines and Best Practices


US Department of Commerce: “…This guidance provides actionable guidelines and best practices for publishing open data optimized for generative AI systems. While it is designed for use by the Department of Commerce and its bureaus, this guidance has been made publicly available to benefit open data publishers globally…(More)”. See also: A Fourth Wave of Open Data? Exploring the Spectrum of Scenarios for Open Data and Generative AI

Effective Data Stewardship in Higher Education: Skills, Competences, and the Emerging Role of Open Data Stewards


Paper by Panos Fitsilis et al: “The significance of open data in higher education stems from the changing tendencies towards open science, and open research in higher education encourages new ways of making scientific inquiry more transparent, collaborative and accessible. This study focuses on the critical role of open data stewards in this transition, essential for managing and disseminating research data effectively in universities, while it also highlights the increasing demand for structured training and professional policies for data stewards in academic settings. Building upon this context, the paper investigates the essential skills and competences required for effective data stewardship in higher education institutions by elaborating on a critical literature review, coupled with practical engagement in open data stewardship at universities, provided insights into the roles and responsibilities of data stewards. In response to these identified needs, the paper proposes a structured training framework and comprehensive curriculum for data stewardship, a direct response to the gaps identified in the literature. It addresses five key competence categories for open data stewards, aligning them with current trends and essential skills and knowledge in the field. By advocating for a structured approach to data stewardship education, this work sets the foundation for improved data management in universities and serves as a critical step towards professionalizing the role of data stewards in higher education. The emphasis on the role of open data stewards is expected to advance data accessibility and sharing practices, fostering increased transparency, collaboration, and innovation in academic research. This approach contributes to the evolution of universities into open ecosystems, where there is free flow of data for global education and research advancement…(More)”.

Exploring the Intersections of Open Data and Generative AI: Recent Additions to the Observatory


Blog by Roshni Singh, Hannah Chafetz, Andrew Zahuranec, Stefaan Verhulst: “The Open Data Policy Lab’s Observatory of Examples of How Open Data and Generative AI Intersect provides real-world use cases of where open data from official sources intersects with generative artificial intelligence (AI), building from the learnings from our report, “A Fourth Wave of Open Data? Exploring the Spectrum of Scenarios for Open Data and Generative AI.” 

The Observatory includes over 80 examples from several domains and geographies–ranging from supporting administrative work within the legal department of the Government of France to assisting researchers across the African continent in navigating cross-border data sharing laws. The examples include generative AI chatbots to improve access to services, conversational tools to help analyze data, datasets to improve the quality of the AI output, and more. A key feature of the Observatory is its categorization across our Spectrum of Scenarios framework, shown below. Through this effort, we aim to bring together the work already being done and identify ways to use generative AI for the public good.

Screenshot 2024 10 25 at 10.50.23 am

This Observatory is an attempt to grapple with the work currently being done to apply generative AI in conjunction with official open data. It does not make a value judgment on their efficacy or practices. Many of these examples have ethical implications, which merit further attention and study. 

From September through October, we added to the Observatory:

  • Bayaan Platform: A conversational tool by the Statistics Centre Abu Dhabi that provides decision makers with data analytics and visualization support.
  • Berufsinfomat: A generative AI tool for career coaching in Austria.
  • ChatTCU: A chatbot for Brazil’s Federal Court of Accounts.
  • City of Helsinki’s AI Register: An initiative aimed at leveraging open city data to enhance civic services and facilitate better engagement with residents.
  • Climate Q&A: A generative AI chatbot that provides information about climate change based on scientific reports.
  • DataLaw.Bot: A generative AI tool that disseminates data sharing regulations with researchers across several African countries…(More)”.

South Korea leverages open government data for AI development


Article by Si Ying Thian: “In South Korea, open government data is powering artificial intelligence (AI) innovations in the private sector.

Take the case of TTCare which may be the world’s first mobile application to analyse eye and skin disease symptoms in pets.

AI Hub allows users to search by industry, data format and year (top row), with the data sets made available based on the particular search term “pet” (bottom half of the page). Image: AI Hub, provided by courtesy of Baek

The AI model was trained on about one million pieces of data – half of the data coming from the government-led AI Hub and the rest collected by the firm itself, according to the Korean newspaper Donga.

AI Hub is an integrated platform set up by the government to support the country’s AI infrastructure.

TTCare’s CEO Heo underlined the importance of government-led AI training data in improving the model’s ability to diagnose symptoms. The firm’s training data is currently accessible through AI Hub, and any Korean citizen can download or use it.

Pushing the boundaries of open data

Over the years, South Korea has consistently come up top in the world’s rankings for Open, Useful, and Re-usable data (OURdata) Index.

The government has been pushing the boundaries of what it can do with open data – beyond just making data usable by providing APIs. Application Programming Interfaces, or APIs, make it easier for users to tap on open government data to power their apps and services.

There is now rising interest from public sector agencies to tap on such data to train AI models, said South Korea’s National Information Society Agency (NIA)’s Principal Manager, Dongyub Baek, although this is still at an early stage.

Baek sits in NIA’s open data department, which handles policies, infrastructure such as the National Open Data Portal, as well as impact assessments of the government initiatives…(More)”

Open government data and self-efficacy: The empirical evidence of micro foundation via survey experiments


Paper by Kuang-Ting Tai, Pallavi Awasthi, and Ivan P. Lee: “Research on the potential impacts of government openness and open government data is not new. However, empirical evidence regarding the micro-level impact, which can validate macro-level theories, has been particularly limited. Grounded in social cognitive theory, this study contributes to the literature by empirically examining how the dissemination of government information in an open data format can influence individuals’ perceptions of self-efficacy, a key predictor of public participation. Based on two rounds of online survey experiments conducted in the U.S., the findings reveal that exposure to open government data is associated with decreased perceived self-efficacy, resulting in lower confidence in participating in public affairs. This result, while contrary to optimistic assumptions, aligns with some other empirical studies and highlights the need to reconsider the format for disseminating government information. The policy implications suggest further calibration of open data applications to target professional and skilled individuals. This study underscores the importance of experiment replication and theory development as key components of future research agendas…(More)”.

A shared destiny for public sector data


Blog post by Shona Nicol: “As a data professional, it can sometime feel hard to get others interested in data. Perhaps like many in this profession, I can often express the importance and value of data for good in an overly technical way. However when our biggest challenges in Scotland include eradicating child poverty, growing the economy and tackling the climate emergency, I would argue that we should all take an interest in data because it’s going to be foundational in helping us solve these problems.

Data is already intrinsic to shaping our society and how services are delivered. And public sector data is a vital component in making sure that services for the people of Scotland are being delivered efficiently and effectively. Despite an ever growing awareness of the transformative power of data to improve the design and delivery of services, feedback from public sector staff shows that they can face difficulties when trying to influence colleagues and senior leaders around the need to invest in data.

A vision gap

In the Scottish Government’s data maturity programme and more widely, we regularly hear about the challenges data professionals encounter when trying to enact change. This community tell us that a long-term vision for public sector data for Scotland could help them by providing the context for what they are trying to achieve locally.

Earlier this year we started to scope how we might do this. We recognised that organisations are already working to deliver local and national strategies and policies that relate to data, so any vision had to be able to sit alongside those, be meaningful in different settings, agnostic of technology and relevant to any public sector organisation. We wanted to offer opportunities for alignment, not enforce an instruction manual…(More)”.

Unlocking AI for All: The Case for Public Data Banks


Article by Kevin Frazier: “The data relied on by OpenAI, Google, Meta, and other artificial intelligence (AI) developers is not readily available to other AI labs. Google and Meta relied, in part, on data gathered from their own products to train and fine-tune their models. OpenAI used tactics to acquire data that now would not work or may be more likely to be found in violation of the law (whether such tactics violated the law when originally used by OpenAI is being worked out in the courts). Upstart labs as well as research outfits find themselves with a dearth of data. Full realization of the positive benefits of AI, such as being deployed in costly but publicly useful ways (think tutoring kids or identifying common illnesses), as well as complete identification of the negative possibilities of AI (think perpetuating cultural biases) requires that labs other than the big players have access to quality, sufficient data.

The proper response is not to return to an exploitative status quo. Google, for example, may have relied on data from YouTube videos without meaningful consent from users. OpenAI may have hoovered up copyrighted data with little regard for the legal and social ramifications of that approach. In response to these questionable approaches, data has (rightfully) become harder to acquire. Cloudflare has equipped websites with the tools necessary to limit data scraping—the process of extracting data from another computer program. Regulators have developed new legal limits on data scraping or enforced old ones. Data owners have become more defensive over their content and, in some cases, more litigious. All of these largely positive developments from the perspective of data creators (which is to say, anyone and everyone who uses the internet) diminish the odds of newcomers entering the AI space. The creation of a public AI training data bank is necessary to ensure the availability of enough data for upstart labs and public research entities. Such banks would prevent those new entrants from having to go down the costly and legally questionable path of trying to hoover up as much data as possible…(More)”.