Article by Cameron F. Kerry, Joshua P. Meltzer, Andrea Renda, and Andrew W. Wyckoff: “We see efforts to consolidate international AI governance as premature and ill-suited to respond to the immense, complex, novel, challenges of governing advanced AI, and the current diverse and decentralized efforts as beneficial and the best fit for this complex and rapidly developing technology.
Exploring the vast terra incognita of AI, realizing its opportunities, and managing its risks requires governance that can adapt and respond rapidly to AI risks as they emerge, develop deep understanding of the technology and its implications, and mobilize diverse resources and initiatives to address the growing global demand for access to AI. No one government or body will have the capacity to take on these challenges without building multiple coalitions and working closely with experts and institutions in industry, philanthropy, civil society, and the academy.
A distributed network of networks can more effectively address the challenges and opportunities of AI governance than a centralized system. Like the architecture of the interconnected information technology systems on which AI depends, such a decentralized system can bring to bear redundancy, resiliency, and diversity by channeling the functions of AI governance toward the most timely and effective pathways in iterative and diversified processes, providing agility against setbacks or failures at any single point. These multiple centers of effort can harness the benefit of network effects and parallel processing.
We explore this model of distributed and iterative AI governance below…(More)”.