A.I. Is Prompting an Evolution, Not an Extinction, for Coders


Article by Steve Lohr: “John Giorgi uses artificial intelligence to make artificial intelligence.

The 29-year-old computer scientist creates software for a health care start-up that records and summarizes patient visits for doctors, freeing them from hours spent typing up clinical notes.

To do so, Mr. Giorgi has his own timesaving helper: an A.I. coding assistant. He taps a few keys and the software tool suggests the rest of the line of code. It can also recommend changes, fetch data, identify bugs and run basic tests. Even though the A.I. makes some mistakes, it saves him up to an hour many days.

“I can’t imagine working without it now,” Mr. Giorgi said.

That sentiment is increasingly common among software developers, who are at the forefront of adopting A.I. agents, assistant programs tailored to help employees do their jobs in fields including customer service and manufacturing. The rapid improvement of the technology has been accompanied by dire warnings that A.I. could soon automate away millions of jobs — and software developers have been singled out as prime targets.

But the outlook for software developers is more likely evolution than extinction, according to experienced software engineers, industry analysts and academics. For decades, better tools have automated some coding tasks, but the demand for software and the people who make it has only increased.

A.I., they say, will accelerate that trend and level up the art and craft of software design.

“The skills software developers need will change significantly, but A.I. will not eliminate the need for them,” said Arnal Dayaratna, an analyst at IDC, a technology research firm. “Not anytime soon anyway.”

The outlook for software engineers offers a window into the impact that generative A.I. — the kind behind chatbots like OpenAI’s ChatGPT — is likely to have on knowledge workers across the economy, from doctors and lawyers to marketing managers and financial analysts. Predictions about the technology’s consequences vary widely, from wiping out whole swaths of the work force to hyper-charging productivity as an elixir for economic growth…(More)”.

Generative AI for data stewards: enhancing accuracy and efficiency in data governance


Paper by Ankush Reddy Sugureddy: “The quality of data becomes an essential component for the success of an organisation in a world that is largely influenced by data, where data analytics is becoming increasingly popular in the process of informing strategic decisions. The failure to improve the quality of the data can lead to undesirable outcomes such as poor decisions, ineffective strategies, dysfunctional operations, lost commercial prospects, and abrasion of the consumer. In the process of organisations shifting their focus towards transformative methods such as generative artificial intelligence, several use cases may emerge that have the potential to aid the improvement of data quality. Streamlining procedures such as data classification, metadata management, and policy enforcement can be accomplished by the incorporation of generative artificial intelligence into data governance frameworks. This, in turn, reduces the workload of human data stewards and minimises the possibility of human error. In order to ensure compliance with legal standards such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA), generative artificial intelligence may analyse enormous datasets by utilising machine learning algorithms to discover patterns, inconsistencies, and compliance issues…(More)”.

California Governor Launches New Digital Democracy Tool


Article by Phil Willon: “California Gov. Gavin Newsom on Sunday announced a new digital democracy initiative that will attempt to connect residents directly with government officials in times of disaster and allow them to express their concerns about matters affecting their day-to-day lives.

The web-based initiative, called Engaged California, will go live with a focus on aiding victims of the deadly wildfires in Pacific Palisades and Altadena who are struggling to recover. For example, comments shared via the online forum could potentially prompt government action regarding insurance coverage, building standards or efforts to require utilities to bury power lines underground.

In a written statement, Newsom described the pilot program as “a town hall for the modern era — where Californians share their perspectives, concerns, and ideas geared toward finding real solutions.”


“We’re starting this effort by more directly involving Californians in the LA firestorm response and recovery,” he added. “As we recover, reimagine, and rebuild Los Angeles, we will do it together.”

The Democrat’s administration has ambitious plans for the effort that go far beyond the wildfires. Engaged California is modeled after a program in Taiwan that became an essential bridge between the public and the government at the height of the COVID-19 pandemic. The Taiwanese government has relied on it to combat online political disinformation as well…(More)”.

The Missing Pieces in India’s AI Puzzle: Talent, Data, and R&D


Article by Anirudh Suri: “This paper explores the question of whether India specifically will be able to compete and lead in AI or whether it will remain relegated to a minor role in this global competition. The paper argues that if India is to meet its larger stated ambition of becoming a global leader in AI, it will need to fill significant gaps in at least three areas urgently: talent, data, and research. Putting these three missing pieces in place can help position India extremely well to compete in the global AI race.

India’s national AI mission (NAIM), also known as the IndiaAI Mission, was launched in 2024 and rightly notes that success in the AI race requires multiple pieces of the AI puzzle to be in place.3 Accordingly, it has laid out a plan across seven elements of the “AI stack”: computing/AI infrastructure, data, talent, research and development (R&D), capital, algorithms, and applications.4

However, the focus thus far has practically been on only two elements: ensuring the availability of AI-focused hardware/compute and, to some extent, building Indic language models. India has not paid enough attention to, acted toward, and put significant resources behind three other key enabling elements of AI competitiveness, namely data, talent, and R&D…(More)”.

Data Sovereignty and Open Sharing: Reconceiving Benefit-Sharing and Governance of Digital Sequence Information


Paper by Masanori Arita: “There are ethical, legal, and governance challenges surrounding data, particularly in the context of digital sequence information (DSI) on genetic resources. I focus on the shift in the international framework, as exemplified by the CBD-COP15 decision on benefit-sharing from DSI and discuss the growing significance of data sovereignty in the age of AI and synthetic biology. Using the example of the COVID-19 pandemic, the tension between open science principles and data control rights is explained. This opinion also highlights the importance of inclusive and equitable data sharing frameworks that respect both privacy and sovereign data rights, stressing the need for international cooperation and equitable access to data to reduce global inequalities in scientific and technological advancement…(More)”.

Critical Data Studies: An A to Z Guide to Concepts and Methods


Book by Rob Kitchin: “Critical Data Studies has come of age as a vibrant, interdisciplinary field of study. Taking data as its primary analytical focus, the field theorises the nature of data; examines how data are produced, managed, governed and shared; investigates how they are used to make sense of the world and to perform practical action; and explores whose agenda data-driven systems serve.

This book is the first comprehensive A-Z guide to the concepts and methods of Critical Data Studies, providing succinct definitions and descriptions of over 400 key terms, along with suggested further reading. The book enables readers to quickly navigate and improve their comprehension of the field, while also acting as a guide for discovering ideas and methods that will be of value in their own studies…(More)”

Introduction to the Foundations and Regulation of Generative AI


Chapter by Philipp Hacker, Andreas Engel, Sarah Hammer and Brent Mittelstadt: “… introduces The Oxford Handbook of the Foundations and Regulation of Generative AI, outlining the key themes and questions surrounding the technical development, regulatory governance, and societal implications of generative AI. It highlights the historical context of generative AI, distinguishes it from traditional AI, and explores its diverse applications across multiple domains, including text, images, music, and scientific discovery. The discussion critically assesses whether generative AI represents a paradigm shift or a temporary hype. Furthermore, the chapter extensively surveys both emerging and established regulatory frameworks, including the EU AI Act, the GDPR, privacy and personality rights, and copyright, as well as global legal responses. We conclude that, for now, the “Old Guard” of legal frameworks regulates generative AI more tightly and effectively than the “Newcomers,” but that may change as the new laws fully kick in. The chapter concludes by mapping the structure of the Handbook…(More)”

Gather, Share, Build


Article by Nithya Ramanathan & Jim Fruchterman: “Recent milestones in generative AI have sent nonprofits, social enterprises, and funders alike scrambling to understand how these innovations can be harnessed for global good. Along with this enthusiasm, there is also warranted concern that AI will greatly increase the digital divide and fail to improve the lives of 90 percent of the people on our planet. The current focus on funding AI intelligently and strategically in the social sector is critical, and it will help ensure that money has the largest impact.

So how can the social sector meet the current moment?

AI is already good at a lot of things. Plenty of social impact organizations are using AI right now, with positive results. Great resources exist for developing a useful understanding of the current landscape and how existing AI tech can serve your mission, including this report from Stanford HAI and Project Evident and this AI Treasure Map for Nonprofits from Tech Matters.

While some tech-for-good companies are creating AI and thriving—Digital Green, Khan Academy, and Jacaranda Health, among many—most social sector companies are not ready to build AI solutions. But even organizations that don’t have AI on their radar need to be thinking about how to address one of the biggest challenges to harnessing AI to solve social sector problems: insufficient data…(More)”.

Advanced Flood Hub features for aid organizations and govern


Announcement by Alex Diaz: “Floods continue to devastate communities worldwide, and many are pursuing advancements in AI-driven flood forecasting, enabling faster, more efficient detection and response. Over the past few years, Google Research has focused on harnessing AI modeling and satellite imagery to dramatically accelerate the reliability of flood forecasting — while working with partners to expand coverage for people in vulnerable communities around the world.

Today, we’re rolling out new advanced features in Flood Hub designed to allow experts to understand flood risk in a given region via inundation history maps, and to understand how a given flood forecast on Flood Hub might propagate throughout a river basin. With the inundation history maps, Flood Hub expert users can view flood risk areas in high resolution over the map regardless of a current flood event. This is useful for cases where our flood forecasting does not include real time inundation maps or for pre-planning of humanitarian work. You can find more explanations about the inundation history maps and more in the Flood Hub Help Center…(More)”.

What 40 Million Devices Can Teach Us About Digital Literacy in America


Blog by Juan M. Lavista Ferres: “…For the first time, Microsoft is releasing a privacy-protected dataset that provides new insights into digital engagement across the United States. This dataset, built from anonymized usage data from 40 million Windows devices, offers the most comprehensive view ever assembled of how digital tools are being used across the country. It goes beyond surveys and self-reported data to provide a real-world look at software application usage across 28,000 ZIP codes, creating a more detailed and nuanced understanding of digital engagement than any existing commercial or government study.

In collaboration with leading researchers at Harvard University and the University of Pennsylvania, we analyzed this dataset and developed two key indices to measure digital literacy:

  • Media & Information Composite Index (MCI): This index captures general computing activity, including media consumption, information gathering, and usage of productivity applications like word processing, spreadsheets, and presentations.
  • Content Creation & Computation Index (CCI): This index measures engagement with more specialized digital applications, such as content creation tools like Photoshop and software development environments.

By combining these indices with demographic data, several important insights emerge:

Urban-Rural Disparities Exist—But the Gaps Are Uneven While rural areas often lag in digital engagement, disparities within urban areas are just as pronounced. Some city neighborhoods have digital activity levels on par with major tech hubs, while others fall significantly behind, revealing a more complex digital divide than previously understood.

Income and Education Are Key Drivers of Digital Engagement Higher-income and higher-education areas show significantly greater engagement in content creation and computational tasks. This suggests that digital skills—not just access—are critical in shaping economic mobility and opportunity. Even in places where broadband availability is the same, digital usage patterns vary widely, demonstrating that access alone is not enough.

Infrastructure Alone Won’t Close the Digital Divide Providing broadband connectivity is essential, but it is not a sufficient solution to the challenges of digital literacy. Our findings show that even in well-connected regions, significant skill gaps persist. This means that policies and interventions must go beyond infrastructure investments to include comprehensive digital education, skills training, and workforce development initiatives…(More)”.