Explore our articles
View All Results
Share:

Should I use Synthetic Data for That? An Analysis of the Suitability of Synthetic Data for Data Sharing and Augmentation

Paper by Bogdan Kulynych, Theresa Stadler, Jean Louis Raisaro, and Carmela Troncoso: “Recent advances in generative modelling have led many to see synthetic data as the go-to solution for a range of problems around data access, scarcity, and under-representation. In this paper, we study three prominent use cases: (1) Sharing synthetic data as a proxy for proprietary datasets to enable statistical analyses while protecting privacy, (2) Augmenting machine learning training sets with synthetic data to improve model performance, and (3) Augmenting datasets with synthetic data to reduce variance in statistical estimation. For each use case, we formalise the problem setting and study, through formal analysis and case studies, under which conditions synthetic data can achieve its intended objectives. We identify fundamental and practical limits that constrain when synthetic data can serve as an effective solution for a particular problem. Our analysis reveals that due to these limits many existing or envisioned use cases of synthetic data are a poor problem fit. Our formalisations and classification of synthetic data use cases enable decision makers to assess whether synthetic data is a suitable approach for their specific data availability problem…(More)”.

Share
How to contribute:

Did you come across – or create – a compelling project/report/book/app at the leading edge of innovation in governance?

Share it with us at info@thelivinglib.org so that we can add it to the Collection!

About the Curator

Get the latest news right in your inbox

Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday

Related articles

Get the latest news right in your inbox

Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday