How the Federal Government is thinking about Artificial Intelligence


Mohana Ravindranath at NextGov: “Since May, the White House has been exploring the use of artificial intelligence and machine learning for the public: that is, how the federal government should be investing in the technology to improve its own operations. The technologies, often modeled after the way humans take in, store and use new information, could help researchers find patterns in genetic data or help judges decide sentences for criminals based on their likelihood to end up there again, among other applications. …

Here’s a look at how some federal groups are thinking about the technology:

  • Police data: At a recent White House workshop, Office of Science and Technology Policy Senior Adviser Lynn Overmann said artificial intelligence could help police departments comb through hundreds of thousands of hours of body-worn camera footage, potentially identifying the police officers who are good at de-escalating situations. It also could help cities determine which individuals are likely to end up in jail or prison and officials could rethink programs. For example, if there’s a large overlap between substance abuse and jail time, public health organizations might decide to focus their efforts on helping people reduce their substance abuse to keep them out of jail.
  • Explainable artificial intelligence: The Pentagon’s research and development agency is looking for technology that can explain to analysts how it makes decisions. If people can’t understand how a system works, they’re not likely to use it, according to a broad agency announcement from the Defense Advanced Research Projects Agency. Intelligence analysts who might rely on a computer for recommendations on investigative leads must “understand why the algorithm has recommended certain activity,” as do employees overseeing autonomous drone missions.
  • Weather detection: The Coast Guard recently posted its intent to sole-source a contract for technology that could autonomously gather information about traffic, crosswind, and aircraft emergencies. That technology contains built-in artificial intelligence technology so it can “provide only operational relevant information.”
  • Cybersecurity: The Air Force wants to make cyber defense operations as autonomous as possible, and is looking at artificial intelligence that could potentially identify or block attempts to compromise a system, among others.

While there are endless applications in government, computers won’t completely replace federal employees anytime soon….(More)”

The risks of relying on robots for fairer staff recruitment


Sarah O’Connor at the Financial Times: “Robots are not just taking people’s jobs away, they are beginning to hand them out, too. Go to any recruitment industry event and you will find the air is thick with terms like “machine learning”, “big data” and “predictive analytics”.

The argument for using these tools in recruitment is simple. Robo-recruiters can sift through thousands of job candidates far more efficiently than humans. They can also do it more fairly. Since they do not harbour conscious or unconscious human biases, they will recruit a more diverse and meritocratic workforce.

This is a seductive idea but it is also dangerous. Algorithms are not inherently neutral just because they see the world in zeros and ones.

For a start, any machine learning algorithm is only as good as the training data from which it learns. Take the PhD thesis of academic researcher Colin Lee, released to the press this year. He analysed data on the success or failure of 441,769 job applications and built a model that could predict with 70 to 80 per cent accuracy which candidates would be invited to interview. The press release plugged this algorithm as a potential tool to screen a large number of CVs while avoiding “human error and unconscious bias”.

But a model like this would absorb any human biases at work in the original recruitment decisions. For example, the research found that age was the biggest predictor of being invited to interview, with the youngest and the oldest applicants least likely to be successful. You might think it fair enough that inexperienced youngsters do badly, but the routine rejection of older candidates seems like something to investigate rather than codify and perpetuate. Mr Lee acknowledges these problems and suggests it would be better to strip the CVs of attributes such as gender, age and ethnicity before using them….(More)”

Can mobile usage predict illiteracy in a developing country?


Pål Sundsøy at arXiv: “The present study provides the first evidence that illiteracy can be reliably predicted from standard mobile phone logs. By deriving a broad set of mobile phone indicators reflecting users financial, social and mobility patterns we show how supervised machine learning can be used to predict individual illiteracy in an Asian developing country, externally validated against a large-scale survey. On average the model performs 10 times better than random guessing with a 70% accuracy. Further we show how individual illiteracy can be aggregated and mapped geographically at cell tower resolution. Geographical mapping of illiteracy is crucial to know where the illiterate people are, and where to put in resources. In underdeveloped countries such mappings are often based on out-dated household surveys with low spatial and temporal resolution. One in five people worldwide struggle with illiteracy, and it is estimated that illiteracy costs the global economy more than 1 trillion dollars each year. These results potentially enable cost-effective, questionnaire-free investigation of illiteracy-related questions on an unprecedented scale…(More)”.

What Governments Can Learn From Airbnb And the Sharing Economy


 in Fortune: “….Despite some regulators’ fears, the sharing economy may not result in the decline of regulation but rather in its opposite, providing a basis upon which society can develop more rational, ethical, and participatory models of regulation. But what regulation looks like, as well as who actually creates and enforce the regulation, is also bound to change.

There are three emerging models – peer regulation, self-regulatory organizations, and data-driven delegation – that promise a regulatory future for the sharing economy best aligned with society’s interests. In the adapted book excerpt that follows, I explain how the third of these approaches, of delegating enforcement of regulations to companies that store critical data on consumers, can help mitigate some of the biases Airbnb guests may face, and why this is a superior alternative to the “open data” approach of transferring consumer information to cities and state regulators.

Consider a different problem — of collecting hotel occupancy taxes from hundreds of thousands of Airbnb hosts rather than from a handful of corporate hotel chains. The delegation of tax collection to Airbnb, something a growing number of cities are experimenting with, has a number of advantages. It is likely to yield higher tax revenues and greater compliance than a system where hosts are required to register directly with the government, which is something occasional hosts seem reluctant to do. It also sidesteps privacy concerns resulting from mandates that digital platforms like Airbnb turn over detailed user data to the government. There is also significant opportunity for the platform to build credibility as it starts to take on quasi governmental roles like this.

There is yet another advantage, and the one I believe will be the most significant in the long-run. It asks a platform to leverage its data to ensure compliance with a set of laws in a manner geared towards delegating responsibility to the platform. You might say that the task in question here — computing tax owed, collecting, and remitting it—is technologically trivial. True. But I like this structure because of the potential it represents. It could be a precursor for much more exciting delegated possibilities.

For a couple of decades now, companies of different kinds have been mining the large sets of “data trails” customers provide through their digital interactions. This generates insights of business and social importance. One such effort we are all familiar with is credit card fraud detection. When an unusual pattern of activity is detected, you get a call from your bank’s security team. Sometimes your card is blocked temporarily. The enthusiasm of these digital security systems is sometimes a nuisance, but it stems from your credit card company using sophisticated machine learning techniques to identify patterns that prior experience has told it are associated with a stolen card. It saves billions of dollars in taxpayer and corporate funds by detecting and blocking fraudulent activity swiftly.

A more recent visible example of the power of mining large data sets of customer interaction came in 2008, when Google engineers announced that they could predict flu outbreaks using data collected from Google searches, and track the spread of flu outbreaks in real time, providing information that was well ahead of the information available using the Center for Disease Control’s (CDC) own tracking systems. The Google system’s performance deteriorated after a couple of years, but its impact on public perception of what might be possible using “big data” was immense.

It seems highly unlikely that such a system would have emerged if Google had been asked to hand over anonymized search data to the CDC. In fact, there would have probably been widespread public backlash to this on privacy grounds. Besides, the reason why this capability emerged organically from within Google is partly as a consequence of Google having one of the highest concentrations of computer science and machine learning talent in the world.

Similar approaches hold great promise as a regulatory approach for sharing economy platforms. Consider the issue of discriminatory practices. There has long been anecdotal evidence that some yellow cabs in New York discriminate against some nonwhite passengers. There have been similar concerns that such behavior may start to manifest on ridesharing platforms and in other peer-to-peer markets for accommodation and labor services.

For example, a 2014 study by Benjamin Edelman and Michael Luca of Harvard suggested that African American hosts might have lower pricing power than white hosts on Airbnb. While the study did not conclusively establish that the difference is due to guests discriminating against African American hosts, a follow-up study suggested that guests with “distinctively African American names” were less likely to receive favorable responses for their requests to Airbnb hosts. This research raises a red flag about the need for vigilance as the lines between personal and professional blur.

One solution would be to apply machine-learning techniques to be able to identify patterns associated with discriminatory behavior. No doubt, many platforms are already using such systems….(More)”

This text-message hotline can predict your risk of depression or stress


Clinton Nguyen for TechInsider: “When counselors are helping someone in the midst of an emotional crisis, they must not only know how to talk – they also must be willing to text.

Crisis Text Line, a non-profit text-message-based counseling service, operates a hotline for people who find it safer or easier to text about their problems than make a phone call or send an instant message. Over 1,500 volunteers are on hand 24/7 to lend support about problems including bullying, isolation, suicidal thoughts, bereavement, self-harm, or even just stress.

But in addition to providing a new outlet for those who prefer to communicate by text, the service is gathering a wellspring of anonymized data.

“We look for patterns in historical conversations that end up being higher risk for self harm and suicide attempts,” Liz Eddy, a Crisis Text Line spokesperson, tells Tech Insider. “By grounding in historical data, we can predict the risk of new texters coming in.crisis-text-line-sms

According to Fortune, the organization is using machine learning to prioritize higher-risk individuals for quicker and more effective responses. But Crisis Text Line is also wielding the data it gathers in other ways – the company has published a page of trends that tells the public which hours or days people are more likely to be affected by certain issues, as well as which US states are most affected by specific crises or psychological states.

According to the data, residents of Alaska reach out to the Text Line for LGBTQ issues more than those in other states, and Maine is one of the most stressed out states. Physical abuse is most commonly reported in North Dakota and Wyoming, while depression is more prevalent in texters from Kentucky and West Virginia.

The research comes at an especially critical time. According to studies from the National Center for Health Statistics, US suicide rates have surged to a 30-year high. The study noted a rise in suicide rates for all demographics except black men over the age of 75. Alarmingly, the suicide rate among 10- to 14-year-old girls has tripled since 1999….(More)”

White House Challenges Artificial Intelligence Experts to Reduce Incarceration Rates


Jason Shueh at GovTech: “The U.S. spends $270 billion on incarceration each year, has a prison population of about 2.2 million and an incarceration rate that’s spiked 220 percent since the 1980s. But with the advent of data science, White House officials are asking experts for help.

On Tuesday, June 7, the White House Office of Science and Technology Policy’s Lynn Overmann, who also leads the White House Police Data Initiative, stressed the severity of the nation’s incarceration crisis while asking a crowd of data scientists and artificial intelligence specialists for aid.

“We have built a system that is too large, and too unfair and too costly — in every sense of the word — and we need to start to change it,” Overmann said, speaking at a Computing Community Consortium public workshop.

She argued that the U.S., a country that has the highest amount incarcerated citizens in the world, is in need of systematic reforms with both data tools to process alleged offenders and at the policy level to ensure fair and measured sentences. As a longtime counselor, advisor and analyst for the Justice Department and at the city and state levels, Overman said she has studied and witnessed an alarming number of issues in terms of bias and unwarranted punishments.

For instance, she said that statistically, while drug use is about equal between African-Americans and Caucasians, African-Americans are more likely to be arrested and convicted. They also receive longer prison sentences compared to Caucasian inmates convicted of the same crimes….

Data and digital tools can help curb such pitfalls by increasing efficiency, transparency and accountability, she said.

“We think these types of data exchanges [between officials and technologists] can actually be hugely impactful if we can figure out how to take this information and operationalize it for the folks who run these systems,” Obermann noted.

The opportunities to apply artificial intelligence and data analytics, she said, might include using it to improve questions on parole screenings, using it to analyze police body camera footage, and applying it to criminal justice data for legislators and policy workers….

If the private sector is any indication, artificial intelligence and machine learning techniques could be used to interpret this new and vast supply of law enforcement data. In an earlier presentation by Eric Horvitz, the managing director at Microsoft Research, Horvitz showcased how the company has applied artificial intelligence to vision and language to interpret live video content for the blind. The app, titled SeeingAI, can translate live video footage, captured from an iPhone or a pair of smart glasses, into instant audio messages for the seeing impaired. Twitter’s live-streaming app Periscope has employed similar technology to guide users to the right content….(More)”

Fan Favorites


Erin Reilly at Strategy + Business: “…In theory, new technological advances such as big data and machine learning, combined with more direct access to audience sentiment, behaviors, and preferences via social media and over-the-top delivery channels, give the entertainment and media industry unprecedented insight into what the audience actually wants. But as a professional in the television industry put it, “We’re drowning in data and starving for insights.” Just as my data trail didn’t trace an accurate picture of my true interest in soccer, no data set can quantify all that consumers are as humans. At USC’s Annenberg Innovation Lab, our research has led us to an approach that blends data collection with a deep understanding of the social and cultural context in which the data is created. This can be a powerful practice for helping researchers understand the behavior of fans — fans of sports, brands, celebrities, and shows.

A Model for Understanding Fans

Marketers and creatives often see audiences and customers as passive assemblies of listeners or spectators. But we believe it’s more useful to view them as active participants. The best analogy may be fans. Broadly characterized, fans have a continued connection with the property they are passionate about. Some are willing to declare their affinity through engagement, some have an eagerness to learn more about their passion, and some want to connect with others who share their interests. Fans are emotionally linked to the object of their passion, and experience their passion through their own subjective lenses. We all start out as audience members. But sometimes, when the combination of factors aligns in just the right way, we become engaged as fans.

For businesses, the key to building this engagement and solidifying the relationship is understanding the different types of fan motivations in different contexts, and learning how to turn the data gathered about them into actionable insights. Even if Jane Smith and her best friend are fans of the same show, the same team, or the same brand, they’re likely passionate for different reasons. For example, some viewers may watch the ABC melodrama Scandal because they’re fashionistas and can’t wait to see the newest wardrobe of star Kerry Washington; others may do so because they’re obsessed with politics and want to see how the newly introduced Donald Trump–like character will behave. And those differences mean fans will respond in varied ways to different situations and content.
Though traditional demographics may give us basic information about who fans are and where they’re located, current methods of understanding and measuring engagement are missing the answers to two essential questions: (1) Why is a fan motivated? and (2) What triggers the fan’s behavior? Our Innovation Lab research group is developing a new model called Leveraging Engagement, which can be used as a framework when designing media strategy….(More)”

Big Crisis Data: Social Media in Disasters and Time-Critical Situations


Book by Carlos Castillo: “Social media is an invaluable source of time-critical information during a crisis. However, emergency response and humanitarian relief organizations that would like to use this information struggle with an avalanche of social media messages that exceeds human capacity to process. Emergency managers, decision makers, and affected communities can make sense of social media through a combination of machine computation and human compassion – expressed by thousands of digital volunteers who publish, process, and summarize potentially life-saving information. This book brings together computational methods from many disciplines: natural language processing, semantic technologies, data mining, machine learning, network analysis, human-computer interaction, and information visualization, focusing on methods that are commonly used for processing social media messages under time-critical constraints, and offering more than 500 references to in-depth information…(More)”

Robot Regulators Could Eliminate Human Error


 in the San Francisco Chronicle and Regblog: “Long a fixture of science fiction, artificial intelligence is now part of our daily lives, even if we do not realize it. Through the use of sophisticated machine learning algorithms, for example, computers now work to filter out spam messages automatically from our email. Algorithms also identify us by our photos on Facebook, match us with new friends on online dating sites, and suggest movies to watch on Netflix.

These uses of artificial intelligence hardly seem very troublesome. But should we worry if government agencies start to use machine learning?

Complaints abound even today about the uncaring “bureaucratic machinery” of government. Yet seeing how machine learning is starting to replace jobs in the private sector, we can easily fathom a literal machinery of government in which decisions made by human public servants increasingly become made by machines.

Technologists warn of an impending “singularity,” when artificial intelligence surpasses human intelligence. Entrepreneur Elon Musk cautions that artificial intelligence poses one of our “biggest existential threats.” Renowned physicist Stephen Hawking eerily forecasts that artificial intelligence might even “spell the end of the human race.”

Are we ready for a world of regulation by robot? Such a world is closer than we think—and it could actually be worth welcoming.

Already government agencies rely on machine learning for a variety of routine functions. The Postal Service uses learning algorithms to sort mail, and cities such as Los Angeles use them to time their traffic lights. But while uses like these seem relatively benign, consider that machine learning could also be used to make more consequential decisions. Disability claims might one day be processed automatically with the aid of artificial intelligence. Licenses could be awarded to airplane pilots based on what kinds of safety risks complex algorithms predict each applicant poses.

Learning algorithms are already being explored by the Environmental Protection Agency to help make regulatory decisions about what toxic chemicals to control. Faced with tens of thousands of new chemicals that could potentially be harmful to human health, federal regulators have supported the development of a program to prioritize which of the many chemicals in production should undergo the more in-depth testing. By some estimates, machine learning could save the EPA up to $980,000 per toxic chemical positively identified.

It’s not hard then to imagine a day in which even more regulatory decisions are automated. Researchers have shown that machine learning can lead to better outcomes when determining whether parolees ought to be released or domestic violence orders should be imposed. Could the imposition of regulatory fines one day be determined by a computer instead of a human inspector or judge? Quite possibly so, and this would be a good thing if machine learning could improve accuracy, eliminate bias and prejudice, and reduce human error, all while saving money.

But can we trust a government that bungled the initial rollout of Healthcare.gov to deploy artificial intelligence responsibly? In some circumstances we should….(More)”

Accountable Algorithms


Paper by Joshua A. Kroll et al: “Many important decisions historically made by people are now made by computers. Algorithms count votes, approve loan and credit card applications, target citizens or neighborhoods for police scrutiny, select taxpayers for an IRS audit, and grant or deny immigration visas.

The accountability mechanisms and legal standards that govern such decision processes have not kept pace with technology. The tools currently available to policymakers, legislators, and courts were developed to oversee human decision-makers and often fail when applied to computers instead: for example, how do you judge the intent of a piece of software? Additional approaches are needed to make automated decision systems — with their potentially incorrect, unjustified or unfair results — accountable and governable. This Article reveals a new technological toolkit to verify that automated decisions comply with key standards of legal fairness.

We challenge the dominant position in the legal literature that transparency will solve these problems. Disclosure of source code is often neither necessary (because of alternative techniques from computer science) nor sufficient (because of the complexity of code) to demonstrate the fairness of a process. Furthermore, transparency may be undesirable, such as when it permits tax cheats or terrorists to game the systems determining audits or security screening.

The central issue is how to assure the interests of citizens, and society as a whole, in making these processes more accountable. This Article argues that technology is creating new opportunities — more subtle and flexible than total transparency — to design decision-making algorithms so that they better align with legal and policy objectives. Doing so will improve not only the current governance of algorithms, but also — in certain cases — the governance of decision-making in general. The implicit (or explicit) biases of human decision-makers can be difficult to find and root out, but we can peer into the “brain” of an algorithm: computational processes and purpose specifications can be declared prior to use and verified afterwards.

The technological tools introduced in this Article apply widely. They can be used in designing decision-making processes from both the private and public sectors, and they can be tailored to verify different characteristics as desired by decision-makers, regulators, or the public. By forcing a more careful consideration of the effects of decision rules, they also engender policy discussions and closer looks at legal standards. As such, these tools have far-reaching implications throughout law and society.

Part I of this Article provides an accessible and concise introduction to foundational computer science concepts that can be used to verify and demonstrate compliance with key standards of legal fairness for automated decisions without revealing key attributes of the decision or the process by which the decision was reached. Part II then describes how these techniques can assure that decisions are made with the key governance attribute of procedural regularity, meaning that decisions are made under an announced set of rules consistently applied in each case. We demonstrate how this approach could be used to redesign and resolve issues with the State Department’s diversity visa lottery. In Part III, we go further and explore how other computational techniques can assure that automated decisions preserve fidelity to substantive legal and policy choices. We show how these tools may be used to assure that certain kinds of unjust discrimination are avoided and that automated decision processes behave in ways that comport with the social or legal standards that govern the decision. We also show how algorithmic decision-making may even complicate existing doctrines of disparate treatment and disparate impact, and we discuss some recent computer science work on detecting and removing discrimination in algorithms, especially in the context of big data and machine learning. And lastly in Part IV, we propose an agenda to further synergistic collaboration between computer science, law and policy to advance the design of automated decision processes for accountability….(More)”