The revolution shall not be automated: On the political possibilities of activism through data & AI

Article by Isadora Cruxên: “Every other day now, there are headlines about some kind of artificial intelligence (AI) revolution that is taking place. If you read the news or check social media regularly, you have probably come across these too: flashy pieces either trumpeting or warning against AI’s transformative potential. Some headlines promise that AI will fundamentally change how we work and learn or help us tackle critical challenges such as biodiversity conservation and climate change. Others question its intelligence, point to its embedded biases, and draw attention to its extractive labour record and high environmental costs.

Scrolling through these headlines, it is easy to feel like the ‘AI revolution’ is happening to us — or perhaps blowing past us at speed — while we are enticed to take the backseat and let AI-powered chat-boxes like ChatGPT do the work. But the reality is that we need to take the driver’s seat.

If we want to leverage this technology to advance social justice and confront the intersecting socio-ecological challenges before us, we need to stop simply wondering what the AI revolution will do to us and start thinking collectively about how we can produce data and AI models differently. As Mimi Ọnụọha and Mother Cyborg put it in A People’s Guide to AI, “the path to a fair future starts with the humans behind the machines, not the machines themselves.”

Sure, this might seem easier said than done. Most AI research and development is being driven by big tech corporations and start-ups. As Lauren Klein and Catherine D’Ignazio discuss in “Data Feminism for AI” (see “Further reading” at the end for all works cited), the results are models, tools, and platforms that are opaque to users, and that cater to the tech ambitions and profit motives of private actors, with broader societal needs and concerns becoming afterthoughts. There is excellent critical work that explores the extractive practices and unequal power relations that underpin AI production, including its relationship to processes of dataficationcolonial data epistemologies, and surveillance capitalism (to link but a few). Interrogating, illuminating, and challenging these dynamics is paramount if we are to take the driver’s seat and find alternative paths…(More)”.