Timing Technology

Blog by Gwern Branwen: “Technological forecasts are often surprisingly prescient in terms of predicting that something was possible & desirable and what they predict eventually happens; but they are far less successful at predicting the timing, and almost always fail, with the success (and riches) going to another.

Why is their knowledge so useless? The right moment cannot be known exactly in advance, so attempts to forecast will typically be off by years or worse. For many claims, there is no way to invest in an idea except by going all in and launching a company, resulting in extreme variance in outcomes, even when the idea is good and the forecasts correct about the (eventual) outcome.

Progress can happen and can be foreseen long before, but the details and exact timing due to bottlenecks are too difficult to get right. Launching too early means failure, but being conservative & launching later is just as bad because regardless of forecasting, a good idea will draw overly-optimistic researchers or entrepreneurs to it like moths to a flame: all get immolated but the one with the dumb luck to kiss the flame at the perfect instant, who then wins everything, at which point everyone can see that the optimal time is past. All major success stories overshadow their long list of predecessors who did the same thing, but got unlucky. So, ideas can be divided into the overly-optimistic & likely doomed, or the fait accompli. On an individual level, ideas are worthless because so many others have them too—‘multiple invention’ is the rule, and not the exception.

This overall problem falls under the reinforcement learning paradigm, and successful approaches are analogous to Thompson sampling/posterior sampling: even an informed strategy can’t reliably beat random exploration which gradually shifts towards successful areas while continuing to take occasional long shots. Since people tend to systematically over-exploit, how is this implemented? Apparently by individuals acting suboptimally on the personal level, but optimally on societal level by serving as random exploration.

A major benefit of R&D, then, is in laying fallow until the ‘ripe time’ when they can be immediately exploited in previously-unpredictable ways; applied R&D or VC strategies should focus on maintaining diversity of investments, while continuing to flexibly revisit previous failures which forecasts indicate may have reached ‘ripe time’. This balances overall exploitation & exploration to progress as fast as possible, showing the usefulness of technological forecasting on a global level despite its uselessness to individuals….(More)”.