Dissertation by Chia-Fang Chung: “Many people collect and analyze data about themselves to improve their health and wellbeing. With the prevalence of smartphones and wearable sensors, people are able to collect detailed and complex data about their everyday behaviors, such as diet, exercise, and sleep. This everyday behavioral data can support individual health goals, help manage health conditions, and complement traditional medical examinations conducted in clinical visits. However, people often need support to interpret this self-tracked data. For example, many people share their data with health experts, hoping to use this data to support more personalized diagnosis and recommendations as well as to receive emotional support. However, when attempting to use this data in collaborations, people and their health experts often struggle to make sense of the data. My dissertation examines how to support collaborations between individuals and health experts using personal informatics data.
My research builds an empirical understanding of individual and collaboration goals around using personal informatics data, current practices of using this data to support collaboration, and challenges and expectations for integrating the use of this data into clinical workflows. These understandings help designers and researchers advance the design of personal informatics systems as well as the theoretical understandings of patient-provider collaboration.
Based on my formative work, I propose