Assessing and Suing an Algorithm


Report by Elina Treyger, Jirka Taylor, Daniel Kim, and Maynard A. Holliday: “Artificial intelligence algorithms are permeating nearly every domain of human activity, including processes that make decisions about interests central to individual welfare and well-being. How do public perceptions of algorithmic decisionmaking in these domains compare with perceptions of traditional human decisionmaking? What kinds of judgments about the shortcomings of algorithmic decisionmaking processes underlie these perceptions? Will individuals be willing to hold algorithms accountable through legal channels for unfair, incorrect, or otherwise problematic decisions?

Answers to these questions matter at several levels. In a democratic society, a degree of public acceptance is needed for algorithms to become successfully integrated into decisionmaking processes. And public perceptions will shape how the harms and wrongs caused by algorithmic decisionmaking are handled. This report shares the results of a survey experiment designed to contribute to researchers’ understanding of how U.S. public perceptions are evolving in these respects in one high-stakes setting: decisions related to employment and unemployment…(More)”.