The Government-Citizen Disconnect


Book by Suzanne Mettler: “Americans’ relationship to the federal government is paradoxical. Polls show that public opinion regarding the government has plummeted to all-time lows, with only one in five saying they trust the government or believe that it operates in their interest. Yet, at the same time, more Americans than ever benefit from some form of government social provision. Political scientist Suzanne Mettler calls this growing gulf between people’s perceptions of government and the actual role it plays in their lives the “government-citizen disconnect.” In The Government-Citizen Disconnect, she explores the rise of this phenomenon and its implications for policymaking and politics.

Drawing from original survey data which probed Americans’ experiences of 21 federal social policies — such as food stamps, Social Security, Medicaid, and the home mortgage interest deduction — Mettler shows that 96 percent of adults have received benefits from at least one of them, and that the average person has utilized five. Overall usage rates transcend social, economic, and political divisions, and most Americans report positive experiences of their policy experiences. However, the fact that they have benefited from these policies bears little positive effect on people’s attitudes towards government. Mettler finds that shared identities and group affiliations are more powerful and consistent influences. In particular, those who oppose welfare tend to extrapolate their unfavorable views of it to government in general. Deep antipathy toward the government has emerged as a conservative movement waged a war on social welfare policies for over forty years, even as economic inequality and benefit use increased.

Mettler finds that patterns of political participation exacerbate the government-citizen disconnect, as those holding positive views of federal programs and supporting expanded benefits have lower rates of involvement than those holding more hostile views of the government. As a result, the loudest political voice belongs to those who have benefited from policies but who give government little credit for their economic well-being, seeing their success more as a matter of their own deservingness. This contributes to the election of politicians who advocate cutting federal social programs. According to Mettler, the government-citizen disconnect frays the bonds of representative government and democracy.

The Government-Citizen Disconnect illuminates a paradox that increasingly shapes American politics. Mettler’s examination of hostility toward government at a time when most Americans will at some point rely on the social benefits it provides helps us better understand the roots of today’s fractious political climate….(More)”

Satellites can advance sustainable development by highlighting poverty


Cordis: “Estimating poverty is crucial for improving policymaking and advancing the sustainability of a society. Traditional poverty estimation methods such as household surveys and census data incur huge costs however, creating a need for more efficient approaches.

With this in mind, the EU-funded USES project examined how satellite images could be used to estimate household-level poverty in rural regions of developing countries. “This promises to be a radically more cost-effective way of monitoring and evaluating the Sustainable Development Goals,” says Dr Gary Watmough, USES collaborator and Interdisciplinary Lecturer in Land Use and Socioecological Systems at the University of Edinburgh, United Kingdom.

Land use and land cover reveal poverty clues

To achieve its aims, the project investigated how land use and land cover information from satellite data could be linked with household survey data. “We looked particularly at how households use the landscape in the local area for agriculture and other purposes such as collecting firewood and using open areas for grazing cattle,” explains Dr Watmough.

The work also involved examining satellite images to determine which types of land use were related to household wealth or poverty using statistical analysis. “By trying to predict household poverty using the land use data we could see which land use variables were most related to the household wealth in the area,” adds Dr Watmough.

Overall, the USES project found that satellite data could predict poverty particularly the poorest households in the area. Dr Watmough comments: “This is quite remarkable given that we are trying to predict complicated household-level poverty from a simple land use map derived from high-resolution satellite data.”

A study conducted by USES in Kenya found that the most important remotely sensed variable was building size within the homestead. Buildings less than 140 m2 were mostly associated with poorer households, whereas those over 140 m2 tended to be wealthier. The amount of bare ground in agricultural fields and within the homestead region was also important. “We also found that poorer households were associated with a shorter number of agricultural growing days,” says Dr Watmough….(More)”.

The Democratization of Data Science


Jonathan Cornelissen at Harvard Business School: “Want to catch tax cheats? The government of Rwanda does — and it’s finding them by studying anomalies in revenue-collection data.

Want to understand how American culture is changing? So does a budding sociologist in Indiana. He’s using data science to find patterns in the massive amounts of text people use each day to express their worldviews — patterns that no individual reader would be able to recognize.

Intelligent people find new uses for data science every day. Still, despite the explosion of interest in the data collected by just about every sector of American business — from financial companies and health care firms to management consultancies and the government — many organizations continue to relegate data-science knowledge to a small number of employees.

That’s a mistake — and in the long run, it’s unsustainable. Think of it this way: Very few companies expect only professional writers to know how to write. So why ask onlyprofessional data scientists to understand and analyze data, at least at a basic level?

Relegating all data knowledge to a handful of people within a company is problematic on many levels. Data scientists find it frustrating because it’s hard for them to communicate their findings to colleagues who lack basic data literacy. Business stakeholders are unhappy because data requests take too long to fulfill and often fail to answer the original questions. In some cases, that’s because the questioner failed to explain the question properly to the data scientist.

Why would non–data scientists need to learn data science? That’s like asking why non-accountants should be expected to stay within budget.

These days every industry is drenched in data, and the organizations that succeed are those that most quickly make sense of their data in order to adapt to what’s coming. The best way to enable fast discovery and deeper insights is to disperse data science expertise across an organization.

Companies that want to compete in the age of data need to do three things: share data tools, spread data skills, and spread data responsibility…(More)”.

The Political Value of Time: Citizenship, Duration, and Democratic Justice


Book by Elizabeth F. Cohen: “Waiting periods and deadlines are so ubiquitous that we often take them for granted. Yet they form a critical part of any democratic architecture. When a precise moment or amount of time is given political importance, we ought to understand why this is so. The Political Value of Time explores the idea of time within democratic theory and practice. Elizabeth F. Cohen demonstrates how political procedures use quantities of time to confer and deny citizenship rights. Using specific dates and deadlines, states carve boundaries around a citizenry. As time is assigned a form of political value it comes to be used to transact over rights. Cohen concludes with a normative analysis of the ways in which the devaluation of some people’s political time constitutes a widely overlooked form of injustice. This book shows readers how and why they need to think about time if they want to understand politics….(More)“.

Data Colonialism: Rethinking Big Data’s Relation to the Contemporary Subject


Nick Couldry and Ulises Mejias in Television & New Media (TVNM): “...Data colonialism combines the predatory extractive practices of historical colonialism with the abstract quantification methods of computing. Understanding Big Data from the Global South means understanding capitalism’s current dependence on this new type of appropriation that works at every point in space where people or things are attached to today’s infrastructures of connection. The scale of this transformation means that it is premature to map the forms of capitalism that will emerge from it on a global scale. Just as historical colonialism over the long-run provided the essential preconditions for the emergence of industrial capitalism, so over time, we can expect that data colonialism will provide the preconditions for a new stage of capitalism that as yet we can barely imagine, but for which the appropriation of human life through data will be central.

Right now, the priority is not to speculate about that eventual stage of capitalism, but to resist the data colonialism that is under way. This is how we understand Big Data from the South. Through what we call ‘data relations’ (new types of human relations which enable the extraction of data for commodification), social life all over the globe becomes an ‘open’ resource for extraction that is somehow ‘just there’ for capital. These global flows of data are as expansive as historic colonialism’s appropriation of land, resources, and bodies, although the epicentre has somewhat shifted. Data colonialism involves not one pole of colonial power (‘the West’), but at least two: the USA and China. This complicates our notion of the geography of the Global South, a concept which until now helped situate resistance and disidentification along geographic divisions between former colonizers and colonized. Instead, the new data colonialism works both externally — on a global scale — and internally on its own home populations. The elites of data colonialism (think of Facebook) benefit from colonization in both dimensions, and North-South, East-West divisions no longer matter in the same way.

It is important to acknowledge both the apparent similarities and the significant differences between our argument and the many preceding critical arguments about Big Data…(More)”

A rationale for data governance as an approach to tackle recurrent drawbacks in open data portals


Conference paper by Juan Ribeiro Reis et al: “Citizens and developers are gaining broad access to public data sources, made available in open data portals. These machine-readable datasets enable the creation of applications that help the population in several ways, giving them the opportunity to actively participate in governance processes, such as decision taking and policy-making.

While the number of open data portals grows over the years, researchers have been able to identify recurrent problems with the data they provide, such as lack of data standards, difficulty in data access and poor understandability. Such issues make difficult the effective use of data. Several works in literature propose different approaches to mitigate these issues, based on novel or well-known data management techniques.

However, there is a lack of general frameworks for tackling these problems. On the other hand, data governance has been applied in large companies to manage data problems, ensuring that data meets business needs and become organizational assets. In this paper, firstly, we highlight the main drawbacks pointed out in literature for government open data portals. Eventually, we bring around how data governance can tackle much of the issues identified…(More)”.

The economic value of data: discussion paper


HM Treasury (UK): “Technological change has radically increased both the volume of data in the economy, and our ability to process it. This change presents an opportunity to transform our economy and society for the better.

Data-driven innovation holds the keys to addressing some of the most significant challenges confronting modern Britain, whether that is tackling congestion and improving air quality in our cities, developing ground-breaking diagnosis systems to support our NHS, or making our businesses more productive.

The UK’s strengths in cutting-edge research and the intangible economy make it well-placed to be a world leader, and estimates suggest that data-driven technologies will contribute over £60 billion per year to the UK economy by 2020.1 Recent events have raised public questions and concerns about the way that data, and particularly personal data, can be collected, processed, and shared with third party organisations.

These are concerns that this government takes seriously. The Data Protection Act 2018 updates the UK’s world-leading data protection framework to make it fit for the future, giving individuals strong new rights over how their data is used. Alongside maintaining a secure, trusted data environment, the government has an important role to play in laying the foundations for a flourishing data-driven economy.

This means pursuing policies that improve the flow of data through our economy, and ensure that those companies who want to innovate have appropriate access to high-quality and well-maintained data.

This discussion paper describes the economic opportunity presented by data-driven innovation, and highlights some of the key challenges that government will need to address, such as: providing clarity around ownership and control of data; maintaining a strong, trusted data protection framework; making effective use of public sector data; driving interoperability and standards; and enabling safe, legal and appropriate data sharing.

Over the last few years, the government has taken significant steps to strengthen the UK’s position as a world leader in data-driven innovation, including by agreeing the Artificial Intelligence Sector Deal, establishing the Geospatial Commission, and making substantial investments in digital skills. The government will build on those strong foundations over the coming months, including by commissioning an Expert Panel on Competition in Digital Markets. This Expert Panel will support the government’s wider review of competition law by considering how competition policy can better enable innovation and support consumers in the digital economy.

There are still big questions to be answered. This document marks the beginning of a wider set of conversations that government will be holding over the coming year, as we develop a new National Data Strategy….(More)”.

Reclaiming the Smart City: Personal Data, Trust and the New Commons


Report by Theo Bass, Emma Sutherland and Tom Symons: “Cities are becoming a major focal point in the personal data economy. In city governments, there is a clamour for data-informed approaches to everything from waste management and public transport through to policing and emergency response

This is a triumph for advocates of the better use of data in how we run cities. After years of making the case, there is now a general acceptance that social, economic and environmental pressures can be better responded to by harnessing data.

But as that argument is won, a fresh debate is bubbling up under the surface of the glossy prospectus of the smart city: who decides what we do with all this data, and how do we ensure that its generation and use does not result in discrimination, exclusion and the erosion of privacy for citizens?

This report brings together a range of case studies featuring cities which have pioneered innovative practices and policies around the responsible use of data about people. Our methods combined desk research and over 20 interviews with city administrators in a number of cities across the world.

Recommendations

Based on our case studies, we also compile a range of lessons that policymakers can use to build an alternative version to the smart city – one which promotes ethical data collection practices and responsible innovation with new technologies:

  1. Build consensus around clear ethical principles, and translate them into practical policies.
  2. Train public sector staff in how to assess the benefits and risks of smart technologies.
  3. Look outside the council for expertise and partnerships, including with other city governments.
  4. Find and articulate the benefits of privacy and digital ethics to multiple stakeholders
  5. Become a test-bed for new services that give people more privacy and control.
  6. Make time and resources available for genuine public engagement on the use of surveillance technologies.
  7. Build digital literacy and make complex or opaque systems more understandable and accountable.
  8. Find opportunities to involve citizens in the process of data collection and analysis from start to finish….(More)”.

Technology, Activism, and Social Justice in a Digital Age


Book edited by John G. McNutt: “…offers a close look at both the present nature and future prospects for social change. In particular, the text explores the cutting edge of technology and social change, while discussing developments in social media, civic technology, and leaderless organizations — as well as more traditional approaches to social change.

It effectively assembles a rich variety of perspectives to the issue of technology and social change; the featured authors are academics and practitioners (representing both new voices and experienced researchers) who share a common devotion to a future that is just, fair, and supportive of human potential.

They come from the fields of social work, public administration, journalism, law, philanthropy, urban affairs, planning, and education, and their work builds upon 30-plus years of research. The authors’ efforts to examine changing nature of social change organizations and the issues they face will help readers reflect upon modern advocacy, social change, and the potential to utilize technology in making a difference….(More)”

To Better Predict Traffic, Look to the Electric Grid


Linda Poon at CityLab: “The way we consume power after midnight can reveal how we bad the morning rush hour will be….

Commuters check Google Maps for traffic updates the same way they check the weather app for rain predictions. And for good reasons: By pooling information from millions of drivers already on the road, Google can paint an impressively accurate real-time portrait of congestion. Meanwhile, historical numbers can roughly predict when your morning commutes may be particularly bad.

But “the information we extract from traffic data has been exhausted,” said Zhen (Sean) Qian, who directs the Mobility Data Analytics Center at Carnegie Mellon University. He thinks that to more accurately predict how gridlock varies from day to day, there’s a whole other set of data that cities haven’t mined yet: electricity use.

“Essentially we all use the urban system—the electricity, water, the sewage system and gas—and when people use them and how heavily they do is correlated to the way they use the transportation system,” he said. How we use electricity at night, it turns out, can reveal when we leave for work the next day. “So we might be able to get new information that helps explain travel time one or two hours in advance by having a better understanding of human activity.”

 In a recent study in the journal Transportation Research Part C, Qian and his student Pinchao Zhang used 2014 data to demonstrate how electricity usage patterns can predict when peak congestion begins on various segments of a major highway in Austin, Texas—the 14th most congested city in the U.S. They crunched 79 days worth of electricity usage data for 322 households (stripped of all private information, including location), feeding it into a machine learning algorithm that then categorized the households into 10 groups according to the time and amount of electricity use between midnight and 6 a.m. By extrapolating the most critical traffic-related information about each group for each day, the model then predicted what the commute may look like that morning.
When compared with 2014 traffic data, they found that 8 out of the 10 patterns had an impact on highway traffic. Households that show a spike of electricity use from midnight to 2 a.m., for example, may be night owls who sleep in, leave late, and likely won’t contribute to the early morning congestion. In contrast, households that report low electricity use from midnight to 5 a.m., followed by a rise after 5:30 a.m., could be early risers who will be on the road during rush hour. If the researchers’ model detects more households falling into the former group, it might predict that peak congestion will start closer to, say, 7:45 a.m. rather than the usual 7:30….(More)”.