Citizen Jury on New Genomic Techniques


Paper by Kai P. Purnhagen and Alexandra Molitorisova: “Between 26-28 January 2024, a citizen jury was convened at the Schloss Thurnau in Upper Franconia, Germany to deliberate about new genomic techniques (NGTs) used in agriculture and food/feed production, ahead of the vote of the European Parliament and the Council of the European Union on the European Commission’s proposal for a regulation on plants obtained by certain NGTs and their food and feed. This report serves as a policy brief with all observations, assessments, and recommendations agreed by the jury with a minimum of 75 percent of the jurors’ votes. This report aims to provide policymakers, stakeholders, and the public with perspectives and considerations surrounding the use of NGTs in agriculture and food/feed production, as articulated by the members of the jury. There are 18 final recommendations produced by the jury. Through thoughtful analysis and dialogue, the jury sought to contribute to informed decision-making processes…(More)”.

The Crisis of Culture: Identity Politics and the Empire of Norms


Book by Olivier Roy: “Are we confronting a new culture—global, online, individualistic? Or is our existing concept of culture in crisis, as explicit, normative systems replace implicit, social values?

Olivier Roy’s new book explains today’s fractures via the extension of individual political and sexual freedoms from the 1960s. For Roy, twentieth-century youth culture disconnected traditional political protest from class, region or ethnicity, fashioning an identity premised on repudiation rather than inheritance of shared history or values. Having spread across generations under neoliberalism and the internet, youth culture is now individualised, ersatz.

Without a shared culture, everything becomes an explicit code of how to speak and act, often online. Identities are now defined by socially fragmenting personal traits, creating affinity-based sub-cultures seeking safe spaces: universities for the left, gated communities and hard borders for the right.

Increased left- and right-wing references to ‘identity’ fail to confront this deeper crisis of culture and community. Our only option, Roy argues, is to restore social bonds at the grassroots or citizenship level…(More)”.

Narratives Online. Shared Stories in Social Media


Book by Ruth Page: “Stories are shared by millions of people online every day. They post and re-post interactions as they re-tell and respond to large-scale mediated events. These stories are important as they can bring people together, or polarise them in opposing groups. Narratives Online explores this new genre – the shared story – and uses carefully chosen case-studies to illustrate the complex processes of sharing as they are shaped by four international social media contexts: Wikipedia, Facebook, Twitter and YouTube. Building on discourse analytic research, Ruth Page develops a new framework – ‘Mediated Narrative Analysis’ – to address the large scale, multimodal nature of online narratives, helping researchers interpret the micro- and macro-level politics that are played out in computer-mediated communication…(More)”.

Market Power in Artificial Intelligence


Paper by Joshua S. Gans: “This paper surveys the relevant existing literature that can help researchers and policy makers understand the drivers of competition in markets that constitute the provision of artificial intelligence products. The focus is on three broad markets: training data, input data, and AI predictions. It is shown that a key factor in determining the emergence and persistence of market power will be the operation of markets for data that would allow for trading data across firm boundaries…(More)”.

Citizen silence: Missed opportunities in citizen science


Paper by Damon M Hall et al: “Citizen science is personal. Participation is contingent on the citizens’ connection to a topic or to interpersonal relationships meaningful to them. But from the peer-reviewed literature, scientists appear to have an acquisitive data-centered relationship with citizens. This has spurred ethical and pragmatic criticisms of extractive relationships with citizen scientists. We suggest five practical steps to shift citizen-science research from extractive to relational, reorienting the research process and providing reciprocal benefits to researchers and citizen scientists. By virtue of their interests and experience within their local environments, citizen scientists have expertise that, if engaged, can improve research methods and product design decisions. To boost the value of scientific outputs to society and participants, citizen-science research teams should rethink how they engage and value volunteers…(More)”.

Predicting IMF-Supported Programs: A Machine Learning Approach


Paper by Tsendsuren Batsuuri, Shan He, Ruofei Hu, Jonathan Leslie and Flora Lutz: “This study applies state-of-the-art machine learning (ML) techniques to forecast IMF-supported programs, analyzes the ML prediction results relative to traditional econometric approaches, explores non-linear relationships among predictors indicative of IMF-supported programs, and evaluates model robustness with regard to different feature sets and time periods. ML models consistently outperform traditional methods in out-of-sample prediction of new IMF-supported arrangements with key predictors that align well with the literature and show consensus across different algorithms. The analysis underscores the importance of incorporating a variety of external, fiscal, real, and financial features as well as institutional factors like membership in regional financing arrangements. The findings also highlight the varying influence of data processing choices such as feature selection, sampling techniques, and missing data imputation on the performance of different ML models and therefore indicate the usefulness of a flexible, algorithm-tailored approach. Additionally, the results reveal that models that are most effective in near and medium-term predictions may tend to underperform over the long term, thus illustrating the need for regular updates or more stable – albeit potentially near-term suboptimal – models when frequent updates are impractical…(More)”.

Whatever Happened to All Those Care Robots?


Article by Stephanie H. Murray: “So far, companion robots haven’t lived up to the hype—and might even exacerbate the problems they’re meant to solve…There are likely many reasons that the long-predicted robot takeover of elder care has yet to take off. Robots are expensive, and cash-strapped care homes don’t have money lying around to purchase a robot, let alone to pay for the training needed to actually use one effectively. And at least so far, social robots just aren’t worth the investment, Wright told me. Pepper can’t do a lot of the things people claimed he could—and he relies heavily on humans to help him do what he can. Despite some research suggesting they can boost well-being among the elderly, robots have shown little evidence that they make life easier for human caregivers. In fact, they require quite a bit of care themselves. Perhaps robots of the future will revolutionize caregiving as hoped. But the care robots we have now don’t even come close, and might even exacerbate the problems they’re meant to solve…(More)”.

Facial Recognition Technology: Current Capabilities, Future Prospects, and Governance


Report by the National Academies of Sciences, Engineering, and Medicine: “Facial recognition technology is increasingly used for identity verification and identification, from aiding law enforcement investigations to identifying potential security threats at large venues. However, advances in this technology have outpaced laws and regulations, raising significant concerns related to equity, privacy, and civil liberties.

This report explores the current capabilities, future possibilities, and necessary governance for facial recognition technology. Facial Recognition Technology discusses legal, societal, and ethical implications of the technology, and recommends ways that federal agencies and others developing and deploying the technology can mitigate potential harms and enact more comprehensive safeguards…(More)”.

Why we’re fighting to make sure labor unions have a voice in how AI is implemented


Article by Liz Shuler and Mike Kubzansky: “Earlier this month, Google’s co-founder admitted that the company had “definitely messed up” after its AI tool, Gemini, produced historically inaccurate images—including depictions of racially diverse Nazis. Sergey Brin cited a lack of “thorough testing” of the AI tool, but the incident is a good reminder that, despite all the hype around generative AI replacing human output, the technology still has a long way to go. 

Of course, that hasn’t stopped companies from deploying AI in the workplace. Some even use the technology as an excuse to lay workers off. Since last May, at least 4,000 people have lost their jobs to AI, and 70% of workers across the country live with the fear that AI is coming for theirs next. And while the technology may still be in its infancy, it’s developing fast. Earlier this year, AI pioneer Mustafa Suleyman said that “left completely to the market and to their own devices, [AI tools are] fundamentally labor-replacing.” Without changes now, AI could be coming to replace a lot of people’s jobs.

It doesn’t have to be this way. AI has enormous potential to build prosperity and unleash human creativity, but only if it also works for working people. Ensuring that happens requires giving the voice of workers—the people who will engage with these technologies every day, and whose lives, health, and livelihoods are increasingly affected by AI and automation—a seat at the decision-making table. 

As president of the AFL-CIO, representing 12.5 million working people across 60 unions, and CEO of Omidyar Network, a social change philanthropy that supports responsible technology, we believe that the single best movement to give everyone a voice is the labor movement. Empowering workers—from warehouse associates to software engineers—is the most powerful tactic we have to ensure that AI develops in the interests of the many, not the few…(More)”.

Monitoring global trade using data on vessel traffic


Article by Graham Pilgrim, Emmanuelle Guidetti and Annabelle Mourougane: “Rising uncertainties and geo-political tensions, together with more complex trade relations have increased the demand for data and tools to monitor global trade in a timely manner. At the same time, advances in Big Data Analytics and access to a huge quantity of alternative data – outside the realm of official statistics – have opened new avenues to monitor trade. These data can help identify bottlenecks and disruptions in real time but need to be cleaned and validated.

One such alternative data source is the Automatic Identification System (AIS), developed by the International Maritime Organisation, facilitating the tracking of vessels across the globe. The system includes messages transmitted by ships to land or satellite receivers, available in quasi real time. While it was primarily designed to ensure vessel safety, this data is particularly well suited for providing insights on trade developments, as over 80% in volume of international merchandise trade is carried by sea (UNCTAD, 2022). Furthermore, AIS data holds granular vessel information and detailed location data, which combined with other data sources can enable the identification of activity at a port (or even berth) level, by vessel type or by the jurisdiction of vessel ownership.

For a number of years, the UN Global Platform has made AIS data available to those compiling official statistics, such as National Statistics Offices (NSOs) or International Organisations. This has facilitated the development of new methodologies, for instance the automated identification of port locations (Irish Central Statistics Office, 2022). The data has also been exploited by data scientists and research centres to monitor trade in specific commodities such as Liquefied Natural Gas (QuantCube Technology, 2022) or to analyse port and shipping operations in a specific country (Tsalamanis et al., 2018). Beyond trade, the dataset has been used to track CO2 emissions from the maritime sector (Clarke et al., 2023).

New work from the OECD Statistics and Data Directorate contributes to existing research in this field in two major ways. First, it proposes a new methodology to identify ports, at a higher level of precision than in past research. Second, it builds indicators to monitor port congestion and trends in maritime trade flows and provides a tool to get detailed information and better understand those flows…(More)”.