Explore our articles
View All Results
behavioral science, INSTITUTIONAL INNOVATION
Share:

Behavioral Economics of AI: LLM Biases and Corrections

Paper by Pietro Bini, Lin William Cong, Xing Huang & Lawrence J. JinDo generative AI models, particularly large language models (LLMs), exhibit systematic behavioral biases in economic and financial decisions? If so, how can these biases be mitigated? Drawing on the cognitive psychology and experimental economics literatures, we conduct the most comprehensive set of experiments to date—originally designed to document human biases—on prominent LLM families across model versions and scales. We document systematic patterns in LLM behavior. In preference-based tasks, responses become more human-like as models become more advanced or larger, while in belief-based tasks, advanced large-scale models frequently generate rational responses. Prompting LLMs to make rational decisions reduces biases…(More)”.

Share
How to contribute:

Did you come across – or create – a compelling project/report/book/app at the leading edge of innovation in governance?

Share it with us at info@thelivinglib.org so that we can add it to the Collection!

About the Curator

Get the latest news right in your inbox

Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday

Related articles

Get the latest news right in your inbox

Subscribe to curated findings and actionable knowledge from The Living Library, delivered to your inbox every Friday