The service, called Microsoft Azure Machine Learning, was announced Monday but won’t be available until July. It combines Microsoft’s own software with publicly available open source software, packaged in a way that is easier to use than most of the arcane strategies currently in use.
“This is drag-and-drop software,” said Joseph Sirosh, vice president for machine learning at Microsoft. “My high schooler is using this.”
That would be a big step forward in popularizing what is currently a difficult process in increasingly high demand. It would also further the ambitions of Satya Nadella, Microsoft’s chief executive, of making Azure the center of Microsoft’s future.
Users of Azure Machine Learning will have to keep their data in Azure, and Microsoft will provide ways to move data from competing services, like Amazon Web Services. Pricing has not yet been finalized, Mr. Sirosh said, but will be based on a premium to Azure’s standard computing and transmission charges.
Machine learning computers examine historical data through different algorithms and programming languages to make predictions. The process is commonly used in Internet search, fraud detection, product recommendations and digital personal assistants, among other things.
As more data is automatically stored online, there are opportunities to use machine learning for performing maintenance, scheduling hospital services, and anticipating disease outbreaks and crime, among other things. The methods have to become easier and cheaper to be popular, however.
That is the goal of Azure Machine Learning. “This is, as far as I know, the first comprehensive machine learning service in the cloud,” Mr. Sirosh said. “I’m leveraging every asset in Microsoft for this.” He is also using ways of accessing an open source version of R, a standard statistical language, while in Azure.
Microsoft is likely to face competition from rival cloud companies, including Google and Amazon. Both Google and Amazon have things like data frameworks used in building machine learning algorithms, as well as their own analysis services. IBM is eager to make use of its predictive software in its cloud business. Visualization companies like Tableau specialize in presenting the results so they can be acted on easily…”