Real-Time Data Can Improve Traffic Management in Major Cities


World Bank: “Traffic management agencies and city planners will soon have access to real-time data to better manage traffic flows on the streets of Cebu City and Metro Manila.

Grab, The World Bank, and the Department of Transportation and Communications (DOTC) launched today the OpenTraffic initiative, which will help address traffic congestion and road safety challenges.

Grab is the leading ride-hailing platform in Southeast Asia and operates in 30 cities across six countries – Singapore, Indonesia, Philippines, Malaysia, Thailand, and Vietnam.

Grab and the World Bank have been developing free, open-source tools that translate Grab’s voluminous driver GPS data into traffic statistics, including speeds, flows, and intersection delays. These statistics power big data open source tools such as OpenTraffic, for analysing traffic speeds and flows, and DRIVER, for identifying road incident blackspots and improving emergency response. Grab and the World Bank plan to make OpenTraffic available to other Southeast Asian city governments in the near future.

“Using big data is one of the potential solutions to the challenges faced by our transport systems. Through this we can provide accurate, real-time information for initiatives that can help alleviate traffic congestion and improve road safety,” said DOTC Secretary Joseph Emilio A. Abaya.

Last month, the World Bank and DOTC helped train more than 200 government staff from the agency, the Philippine National Police (PNP), the Metro Manila Development Authority (MMDA), the Department of Public Works and Highways (DPWH), and the Cebu City Transportation Office on the use of the OpenTraffic platform….In the near future, traffic statistics derived through OpenTraffic will be fed into another application called “DRIVER” or Data for Road Incident Visualization, Evaluation, and Reporting for road incident recording and analysis. This application, developed by the World Bank, will help engineering units to prioritize crash-prone areas for interventions and improve emergency response….(More)”

An App to Save Syria’s Lost Generation? What Technology Can and Can’t Do


 in Foreign Affairs: ” In January this year, when the refugee and migrant crisis in Europe had hit its peak—more than a million had crossed into Europe over the course of 2015—the U.S. State Department and Google hosted a forum of over 100 technology experts. The goal was to “bridge the education gap for Syrian refugee children.” Speaking to the group assembled at Stanford University, Deputy Secretary of State Antony Blinken announced a $1.7 million prize “to develop a smartphone app that can help Syrian children learn how to read and improve their wellbeing.” The competition, known as EduApp4Syria, is being run by the Norwegian Agency for Development Cooperation (Norad) and is supported by the Australian government and the French mobile company Orange.

Less than a month later, a group called Techfugees brought together over 100 technologists for a daylong brainstorm in New York City focused exclusively on education solutions. “We are facing the largest refugee crisis since World War II,” said U.S. Ambassador to the United Nations Samantha Power to open the conference. “It is a twenty-first-century crisis and we need a twenty-first-century solution.” Among the more promising, according to Power, were apps that enable “refugees to access critical services,” new “web platforms connecting refugees with one another,” and “education programs that teach refugees how to code.”

For example, the nonprofit PeaceGeeks created the Services Advisor app for the UN Refugee Agency, which maps the location of shelters, food distribution centers, and financial services in Jordan….(More)”

How to implement “open innovation” in city government


Victor Mulas at the Worldbank: “City officials are facing increasingly complex challenges. As urbanization rates grow, cities face higher demand for services from a larger and more densely distributed population. On the other hand, rapid changes in the global economy are affecting cities that struggle to adapt to these changes, often resulting in economic depression and population drain.

“Open innovation” is the latest buzz word circulating in forums on how to address the increased volume and complexity of challenges for cities and governments in general.

But, what is open innovation?

Traditionally, public services were designed and implemented by a group of public officials. Open innovation allows us to design these services with multiple actors, including those who stand to benefit from the services, resulting in more targeted and better tailored services, often implemented through partnership with these stakeholders. Open innovation allows cities to be more productive in providing services while addressing increased demand and higher complexity of services to be delivered.

New York, Barcelona, Amsterdam and many other cities have been experimenting with this concept, introducing challenges for entrepreneurs to address common problems or inviting stakeholders to co-create new services.   Open innovation has gone from being a “buzzword” to another tool in the city officials’ toolbox.

However, even cities that embrace open innovation are still struggling to implement it beyond a few specific areas.  This is understandable, as introducing open innovation practically requires a new way of doing things for city governments, which tend to be complex and bureaucratic organizations.

Counting with an engaged mayor is not enough to bring this kind of transformation. Changing the behavior of city officials requires their buy-in, it can’t be done top down

We have been introducing open innovation to cities and governments for the last three years in Chile, Colombia, Egypt and Mozambique. We have addressed specific challenges and iteratively designed and tested a systematic methodology to introduce open innovation in government through both a top-down and a bottom-up approaches. We have tested this methodology in Colombia (Cali, Barranquilla and Manizales) and Chile (metropolitan area of Gran Concepción).   We have identified “internal champions” (i.e., government officials who advocate the new methodology), and external stakeholders organized in an “innovation hub” that provides long-term sustainability and scalability of interventions. We believe that this methodology is easily applicable beyond cities to other government entities at the regional and national levels. …To understand how the methodology practically works, we describe in this report the process and its results in its application in the city area of Gran Concepción, in Chile. For this activity, the urban transport sector was selected and the target of intervention were the regional and municipal government departments in charge or urban transport in the area of Gran Concepción. The activity in Chile resulted in a threefold impact:

  1. It catalyzed the adoption of the bottom-up smart city model following this new methodology throughout Chile; and
  2. It expanded the implementation and mainstreaming of the methodologies developed and tested through this activity in other World Bank projects.

More information about this activity in Chile can be found in the Smart City Gran Concepcion webpage…(More)”

Smart crowds in smart cities: real life, city scale deployments of a smartphone based participatory crowd management platform


Tobias FrankePaul Lukowicz and Ulf Blanke at the Journal of Internet Services and Applications: “Pedestrian crowds are an integral part of cities. Planning for crowds, monitoring crowds and managing crowds, are fundamental tasks in city management. As a consequence, crowd management is a sprawling R&D area (see related work) that includes theoretical models, simulation tools, as well as various support systems. There has also been significant interest in using computer vision techniques to monitor crowds. However, overall, the topic of crowd management has been given only little attention within the smart city domain. In this paper we report on a platform for smart, city-wide crowd management based on a participatory mobile phone sensing platform. Originally, the apps based on this platform have been conceived as a technology validation tool for crowd based sensing within a basic research project. However, the initial deployments at the Notte Bianca Festival1 in Malta and at the Lord Mayor’s Show in London2 generated so much interest within the civil protection community that it has gradually evolved into a full-blown participatory crowd management system and is now in the process of being commercialized through a startup company. Until today it has been deployed at 14 events in three European countries (UK, Netherlands, Switzerland) and used by well over 100,000 people….

Obtaining knowledge about the current size and density of a crowd is one of the central aspects of crowd monitoring . For the last decades, automatic crowd monitoring in urban areas has mainly been performed by means of image processing . One use case for such video-based applications can be found in, where a CCTV camera-based system is presented that automatically alerts the staff of subway stations when the waiting platform is congested. However, one of the downsides of video-based crowd monitoring is the fact that video cameras tend to be considered as privacy invading. Therefore,  presents a privacy preserving approach to video-based crowd monitoring where crowd sizes are estimated without people models or object tracking.

With respect to the mitigation of catastrophes induced by panicking crowds (e.g. during an evacuation), city planners and architects increasingly rely on tools simulating crowd behaviors in order to optimize infrastructures. Murakami et al. presents an agent based simulation for evacuation scenarios. Shendarkar et al. presents a work that is also based on BSI (believe, desire, intent) agents – those agents however are trained in a virtual reality environment thereby giving greater flexibility to the modeling. Kluepfel et al. on the other hand uses a cellular automaton model for the simulation of crowd movement and egress behavior.

With smartphones becoming everyday items, the concept of crowd sourcing information from users of mobile application has significantly gained traction. Roitman et al. presents a smart city system where the crowd can send eye witness reports thereby creating deeper insights for city officials. Szabo et al. takes this approach one step further and employs the sensors built into smartphones for gathering data for city services such as live transit information. Ghose et al. utilizes the same principle for gathering information on road conditions. Pan et al. uses a combination of crowd sourcing and social media analysis for identifying traffic anomalies….(More)”.

Moneyballing Criminal Justice


Anne Milgram in the Atlantic: “…One area in which the potential of data analysis is still not adequately realized,however, is criminal justice. This is somewhat surprising given the success of CompStat, a law enforcement management tool that uses data to figure out how police resources can be used to reduce crime and hold law enforcement officials accountable for results. CompStat is widely credited with contributing to New York City’s dramatic reduction in serious crime over the past two decades. Yet data-driven decision-making has not expanded to the whole of the criminal justice system.

But it could. And, in this respect, the front end of the system — the part of the process that runs from arrest through sentencing — is particularly important. Atthis stage, police, prosecutors, defenders, and courts make key choices about how to deal with offenders — choices that, taken together, have an enormous impact on crime. Yet most jurisdictions do not collect or analyze the data necessary to know whether these decisions are being made in a way that accomplishes the most important goals of the criminal justice system: increased public safety,decreased recidivism, reduced cost, and the fair, efficient administration of justice.

Even in jurisdictions where good data exists, a lack of technology is often an obstacle to using it effectively. Police, jails, courts, district attorneys, and public defenders each keep separate information systems, the data from which is almost never pulled together and analyzed in a way that could answer the questions that matter most: Who is in our criminal justice system? What crimes have been charged? What risks do individual offenders pose? And which option would best protect the public and make the best use of our limited resources?

While debates about prison over-crowding, three strikes laws, and mandatory minimum sentences have captured public attention, the importance of what happens between arrest and sentencing has gone largely unnoticed. Even though I ran the criminal justice system in New Jersey, one of the largest states in the country, I had not realized the magnitude of the pretrial issues until I was tasked by theLaura and John Arnold Foundation with figuring out which aspects of criminal justice had the most need and presented the greatest opportunity for reform….

Technology could help us leverage data to identify offenders who will pose unacceptable risks to society if they are not behind bars and distinguish them from those defendants who will have lower recidivism rates if they are supervised in the community or given alternatives to incarceration before trial. Likewise, it could help us figure out which terms of imprisonment, alternatives to incarceration, and other interventions work best–and for whom. And the list does not end there.

The truth is our criminal justice system already makes these decisions every day.But it makes them without knowing whether they’re the right ones. That needs to change. If data is powerful enough to transform baseball, health care, and education, it can do the same for criminal justice….(More)”

…(More).

Twelve principles for open innovation 2.0


Martin Curley in Nature: “A new mode of innovation is emerging that blurs the lines between universities, industry, governments and communities. It exploits disruptive technologies — such as cloud computing, the Internet of Things and big data — to solve societal challenges sustainably and profitably, and more quickly and ably than before. It is called open innovation 2.0 (ref. 1).

Such innovations are being tested in ‘living labs’ in hundreds of cities. In Dublin, for example, the city council has partnered with my company, the technology firm Intel (of which I am a vice-president), to install a pilot network of sensors to improve flood management by measuring local rain fall and river levels, and detecting blocked drains. Eindhoven in the Netherlands is working with electronics firm Philips and others to develop intelligent street lighting. Communications-technology firm Ericsson, the KTH Royal Institute of Technology, IBM and others are collaborating to test self-driving buses in Kista, Sweden.

Yet many institutions and companies remain unaware of this radical shift. They often confuse invention and innovation. Invention is the creation of a technology or method. Innovation concerns the use of that technology or method to create value. The agile approaches needed for open innovation 2.0 conflict with the ‘command and control’ organizations of the industrial age (see ‘How innovation modes have evolved’). Institutional or societal cultures can inhibit user and citizen involvement. Intellectual-property (IP) models may inhibit collaboration. Government funders can stifle the emergence of ideas by requiring that detailed descriptions of proposed work are specified before research can begin. Measures of success, such as citations, discount innovation and impact. Policymaking lags behind the market place….

Keys to collaborative innovation

  1. Purpose. Efforts and intellects aligned through commitment rather than compliance deliver an impact greater than the sum of their parts. A great example is former US President John F. Kennedy’s vision of putting a man on the Moon. Articulating a shared value that can be created is important. A win–win scenario is more sustainable than a win–lose outcome.
  2. Partner. The ‘quadruple helix’ of government, industry, academia and citizens joining forces aligns goals, amplifies resources, attenuates risk and accelerates progress. A collaboration between Intel, University College London, Imperial College London and Innovate UK’s Future Cities Catapult is working in the Intel Collaborative Research Institute to improve people’s well-being in cities, for example to enable reduction of air pollution.
  3. Platform. An environment for collaboration is a basic requirement. Platforms should be integrated and modular, allowing a plug-and-play approach. They must be open to ensure low barriers to use, catalysing the evolution of a community. Challenges in security, standards, trust and privacy need to be addressed. For example, the Open Connectivity Foundation is securing interoperability for the Internet of Things.
  4. Possibilities. Returns may not come from a product but from the business model that enabled it, a better process or a new user experience. Strategic tools are available, such as industrial designer Larry Keeley’s breakdown of innovations into ten types in four categories: finance, process, offerings and delivery.
  5. Plan. Adoption and scale should be the focus of innovation efforts, not product creation. Around 20% of value is created when an innovation is established; more than 80% comes when it is widely adopted7. Focus on the ‘four Us’: utility (value to the user); usability; user experience; and ubiquity (designing in network effects).
  6. Pyramid. Enable users to drive innovation. They inspired two-thirds of innovations in semiconductors and printed circuit boards, for example. Lego Ideas encourages children and others to submit product proposals — submitters must get 10,000 supporters for their idea to be reviewed. Successful inventors get 1% of royalties.
  7. Problem. Most innovations come from a stated need. Ethnographic research with users, customers or the environment can identify problems and support brainstorming of solutions. Create a road map to ensure the shortest path to a solution.
  8. Prototype. Solutions need to be tested and improved through rapid experimentation with users and citizens. Prototyping shows how applicable a solution is, reduces the risks of failures and can reveal pain points. ‘Hackathons’, where developers come together to rapidly try things, are increasingly common.
  9. Pilot. Projects need to be implemented in the real world on small scales first. The Intel Collaborative Research Institute runs research projects in London’s parks, neighbourhoods and schools. Barcelona’s Laboratori — which involves the quadruple helix — is pioneering open ‘living lab’ methods in the city to boost culture, knowledge, creativity and innovation.
  10. Product. Prototypes need to be converted into viable commercial products or services through scaling up and new infrastructure globally. Cloud computing allows even small start-ups to scale with volume, velocity and resilience.
  11. Product service systems. Organizations need to move from just delivering products to also delivering related services that improve sustainability as well as profitability. Rolls-Royce sells ‘power by the hour’ — hours of flight time rather than jet engines — enabled by advanced telemetry. The ultimate goal of open innovation 2.0 is a circular or performance economy, focused on services and reuse rather than consumption and waste.
  12. Process. Innovation is a team sport. Organizations, ecosystems and communities should measure, manage and improve their innovation processes to deliver results that are predictable, probable and profitable. Agile methods supported by automation shorten the time from idea to implementation….(More)”

City planners tap into wealth of cycling data from Strava tracking app


Peter Walker in The Guardian: “Sheila Lyons recalls the way Oregon used to collect data on how many people rode bikes. “It was very haphazard, two-hour counts done once a year,” said the woman in charge of cycling policy for the state government.“Volunteers, sitting on the street corner because they wanted better bike facilities. Pathetic, really.”

But in 2013 a colleague had an idea. She recorded her own bike rides using an app called Strava, and thought: why not ask the company to share its data? And so was born Strava Metro, both an inadvertent tech business spinoff and a similarly accidental urban planning tool, one that is now quietly helping to reshape streets in more than 70 places around the world and counting.

Using the GPS tracking capability of a smartphone and similar devices, Strata allows people to plot how far and fast they go and compare themselves against other riders. Users create designated route segments, which each have leaderboards ranked by speed.

Originally aimed just at cyclists, Strava soon incorporated running and now has options for more than two dozen pursuits. But cycling remains the most popular,and while the company is coy about overall figures, it says it adds 1 million new members every two months, and has more than six million uploads a week.

For city planners like Lyons, used to very occasional single-street bike counts,this is a near-unimaginable wealth of data. While individual details are anonymised, it still shows how many Strava-using cyclists, plus their age and gender, ride down any street at any time of the day, and the entire route they take.

The company says it initially had no idea how useful the information could be,and only began visualising data on heatmaps as a fun project for its engineers.“We’re not city planners,” said Michael Horvath, one of two former HarvardUniversity rowers and relatively veteran 40-something tech entrepreneurs who co-founded Strava in 2009.

“One of the things that we learned early on is that these people just don’t have very much data to begin with. Not only is ours a novel dataset, in many cases it’s the only dataset that speaks to the behaviour of cyclists and pedestrians in that city or region.”…(More)”

Big Data for public policy: the quadruple helix


Julia Lane in the Journal of Policy Analysis and Management: “Data from the federal statistical system, particularly the Census Bureau, have long been a key resource for public policy. Although most of those data have been collected through purposive surveys, there have been enormous strides in the use of administrative records on business (Jarmin & Miranda, 2002), jobs (Abowd, Halti- wanger, & Lane, 2004), and individuals (Wagner & Layne, 2014). Those strides are now becoming institutionalized. The President has allocated $10 million to an Administrative Records Clearing House in his FY2016 budget. Congress is considering a bill to use administrative records, entitled the Evidence-Based Policymaking Commission Act, sponsored by Patty Murray and Paul Ryan. In addition, the Census Bureau has established a Center for “Big Data.” In my view, these steps represent important strides for public policy, but they are only part of the story. Public policy researchers must look beyond the federal statistical system and make use of the vast resources now available for research and evaluation.

All politics is local; “Big Data” now mean that policy analysis can increasingly be local. Modern empirical policy should be grounded in data provided by a network of city/university data centers. Public policy schools should partner with scholars in the emerging field of data science to train the next generation of policy researchers in the thoughtful use of the new types of data; the apparent secular decline in the applications to public policy schools is coincident with the emergence of data science as a field of study in its own right. The role of national statistical agencies should be fundamentally rethought—and reformulated to one of four necessary strands in the data infrastructure; that of providing benchmarks, confidentiality protections, and national statistics….(More)”

Towards a critique of cybernetic urbanism: The smart city and the society of control


Maroš Krivý at Planning Theory: “The smart city has become a hegemonic notion of urban governance, transforming and supplanting planning. The first part of this article reviews current critiques of this notion. Scholars present three main arguments against the smart city: that it is incompatible with an informal character of the city, that it subjects the city to corporate power and that it reproduces social and urban inequalities. It is argued that these critiques either misunderstand how power functions in the smart city or fail to address it as a specific modality of entrepreneurial urban governance. The second part advances an alternative critique, contending that the smart city should be understood as an urban embodiment of the society of control (Deleuze). The smart city is embedded in the intellectual framework of second order cybernetics and articulates urban subjectivity in terms of data flows. Planning as a political practice is superseded by an environmental-behavioural control, in which subjectivity is articulated supra-individually (permeating the city with sensing nodes) and infra-individually (making citizens into sensing nodes)….(More)”

Jakarta’s plans for predictive government


 at GovInsider: “Jakarta is predicting floods and traffic using complaints data, and plans to do so for dengue as well.

Its Smart City Unit has partnered with startup Qlue to build a dashboard, analysing data from online complaints, sensors and traffic apps. “Our algorithms can predict several things related to our reports such as flood, traffic, and others”, Qlue co-founder and CEO Rama Raditya told GovInsider.

Take floods, for instance. Using trends in complaints from citizens, water level history from sensors and weather data, it can predict the intensity of floods in specific locations next year. “They can predict what will happen when they compare the weather with the flood conditions from last year”, he said.

The city will start to predict dengue hotspots from next year, Rama said. The dashboard was not originally looking at dengue, but after receiving “thousands of complaints on dengue locations”, the government is now looking into this data. “Next year our algorithm will allow the government to know before it happens so they can prepare the amount of medication and so on within each district,” he said.

The dashboard is paired with an app. The app started with collecting citizens’ complaints and has been expanding with new features. It now has a virtual reality section to explore tourist sites in the city. Next week it is launching an augmented reality feature giving directions to nearby ATMs, restaurants,mosques and parks, Rama said.

Qlue has become a strategic part of the Jakarta administration, with the Governor himself using it to decide who to fire and promote. Following its rise in the capital city, it is now being used by 12 other cities across Indonesia: Bandung, Makassar, Bali, Manado, Surabaya, Bogor, Depok, Palembang, Bekasi,Yogyakarta, Riau and Semarang….(More)