Paper by Aline Stoll and Kevin C Andermatt: “Many public sector organizations set up innovation laboratories in response to the pressure to tackle societal problems and the high expectations placed on them to innovate public services. Our understanding of the public sector innovation laboratories’ role in enhancing the innovation capacity of administrations is still limited. It is challenging to assess or compare the impact of innovation laboratories because of how they operate and what they do. This paper closes this research gap by offering a typology that organizes the diverse nature of innovation labs and makes it possible to compare various lab settings. The proposed typology gives possible relevant factors to increase the innovation capacity of public organizations. The findings are based on a literature review of primarily explorative papers and case studies, which made it possible to identify the relevant criteria. The proposed typology covers three dimensions: (1) value (intended innovation impact of the labs); (2) governance (role of government and financing model); and (3) network (stakeholders in the collaborative arrangements). Comparing European countries and regions with regards to the repartition of labs shows that Nordic and British countries tend to have broader scope than continental European countries…(More)”.
Social Informatics
Book edited by Noriko Hara, and Pnina Fichman: “Social informatics examines how society is influenced by digital technologies and how digital technologies are shaped by political, economic, and socio-cultural forces. The chapters in this edited volume use social informatics approaches to analyze recent issues in our increasingly data-intensive society.
Taking a social informatics perspective, this edited volume investigates the interaction between society and digital technologies and includes research that examines individuals, groups, organizations, and nations, as well as their complex relationships with pervasive mobile and wearable devices, social media platforms, artificial intelligence, and big data. This volume’s contributors range from seasoned and renowned researchers to upcoming researchers in social informatics. The readers of the book will understand theoretical frameworks of social informatics; gain insights into recent empirical studies of social informatics in specific areas such as big data and its effects on privacy, ethical issues related to digital technologies, and the implications of digital technologies for daily practices; and learn how the social informatics perspective informs research and practice…(More)”.
Handbook on Governance and Data Science
Handbook edited by Sarah Giest, Bram Klievink, Alex Ingrams, and Matthew M. Young: “This book is based on the idea that there are quite a few overlaps and connections between the field of governance studies and data science. Data science, with its focus on extracting insights from large datasets through sophisticated algorithms and analytics (Provost and Fawcett 2013), provides government with tools to potentially make more informed decisions, enhance service delivery, and foster transparency and accountability. Governance studies, concerned with the processes and structures through which public policy and services are formulated and delivered (Osborne 2006), increasingly rely on data-driven insights to address complex societal challenges, optimize resource allocation, and engage citizens more effectively (Meijer and Bolívar 2016). However, research insights in journals or at conferences remain quite separate, and thus there are limited spaces for having interconnected conversations. In addition, unprecedented societal challenges demand not only innovative solutions but new approaches to problem-solving.
In this context, data science techniques emerge as a crucial element in crafting a modern governance paradigm, offering predictive insights, revealing hidden patterns, and enabling real-time monitoring of public sentiment and service effectiveness, which are invaluable for public administrators (Kitchin 2014). However, the integration of data science into public governance also raises important considerations regarding data privacy, ethical use of data, and the need for transparency in algorithmic decision-making processes (Zuiderwijk and Janssen 2014). In short, this book is a space where governance and data science studies intersect and highlight relevant opportunities and challenges in this space at the intersection of both fields. Contributors to this book discuss the types of data science techniques applied in a governance context and the implications these have for government decisions and services. This also includes questions around the types of data that are used in government and how certain processes and challenges are measured…(More)”.
AI crawler wars threaten to make the web more closed for everyone
Article by Shayne Longpre: “We often take the internet for granted. It’s an ocean of information at our fingertips—and it simply works. But this system relies on swarms of “crawlers”—bots that roam the web, visit millions of websites every day, and report what they see. This is how Google powers its search engines, how Amazon sets competitive prices, and how Kayak aggregates travel listings. Beyond the world of commerce, crawlers are essential for monitoring web security, enabling accessibility tools, and preserving historical archives. Academics, journalists, and civil societies also rely on them to conduct crucial investigative research.
Crawlers are endemic. Now representing half of all internet traffic, they will soon outpace human traffic. This unseen subway of the web ferries information from site to site, day and night. And as of late, they serve one more purpose: Companies such as OpenAI use web-crawled data to train their artificial intelligence systems, like ChatGPT.
Understandably, websites are now fighting back for fear that this invasive species—AI crawlers—will help displace them. But there’s a problem: This pushback is also threatening the transparency and open borders of the web, that allow non-AI applications to flourish. Unless we are thoughtful about how we fix this, the web will increasingly be fortified with logins, paywalls, and access tolls that inhibit not just AI but the biodiversity of real users and useful crawlers…(More)”.
How Philanthropy Built, Lost, and Could Reclaim the A.I. Race
Article by Sara Herschander: “How do we know you won’t pull an OpenAI?”
It’s the question Stella Biderman has gotten used to answering when she seeks funding from major foundations for EleutherAI, her two-year-old nonprofit A.I. lab that has developed open-source artificial intelligence models.
The irony isn’t lost on her. Not long ago, she declined a deal dangled by one of Silicon Valley’s most prominent venture capitalists who, with the snap of his fingers, promised to raise $100 million for the fledgling nonprofit lab — over 30 times EleutherAI’s current annual budget — if only the lab’s leaders would agree to drop its 501(c)(3) status.
In today’s A.I. gold rush, where tech giants spend billions on increasingly powerful models and top researchers command seven-figure salaries, to be a nonprofit A.I. lab is to be caught in a Catch-22: defend your mission to increasingly wary philanthropic funders or give in to temptation and become a for-profit company.
Philanthropy once played an outsize role in building major A.I. research centers and nurturing influential theorists — by donating hundreds of millions of dollars, largely to university labs — yet today those dollars are dwarfed by the billions flowing from corporations and venture capitalists. For tech nonprofits and their philanthropic backers, this has meant embracing a new role: pioneering the research and safeguards the corporate world won’t touch.
“If making a lot of money was my goal, that would be easy,” said Biderman, whose employees have seen their pay packages triple or quadruple after being poached by companies like OpenAI, Anthropic, and Google.
But EleutherAI doesn’t want to join the race to build ever-larger models. Instead, backed by grants from Open Philanthropy, Omidyar Network, and A.I. companies Hugging Face and StabilityAI, the group has carved out a different niche: researching how A.I. systems make decisions, maintaining widely used training datasets, and shaping global policy around A.I. safety and transparency…(More)”.
Economic Implications of Data Regulation
OECD Report: “Cross-border data flows are the lifeblood of today’s social and economic interactions, but they also raise a range of new challenges, including for privacy and data protection, national security, cybersecurity, digital protectionism and regulatory reach. This has led to a surge in regulation conditioning (or prohibiting) its flow or mandating that data be stored or processed domestically (data localisation). However, the economic implications of these measures are not well understood. This report provides estimates on what is at stake, highlighting that full fragmentation could reduce global GDP by 4.5%. It also underscores the benefits associated with open regimes with safeguards which could see global GDP increase by 1.7%. In a world where digital fragmentation is growing, global discussions on these issues can help harness the benefits of an open and safeguarded internet…(More)”.
Digital Data and Advanced AI for Richer Global Intelligence
Report by Danielle Goldfarb: “From collecting millions of online price data to measure inflation, to assessing the economic impact of the COVID-19 pandemic on low-income workers, digital data sets can be used to benefit the public interest. Using these and other examples, this special report explores how digital data sets and advances in artificial intelligence (AI) can provide timely, transparent and detailed insights into global challenges. These experiments illustrate how governments and civil society analysts can reuse digital data to spot emerging problems, analyze specific group impacts, complement traditional metrics or verify data that may be manipulated. AI and data governance should extend beyond addressing harms. International institutions and governments need to actively steward digital data and AI tools to support a step change in our understanding of society’s biggest challenges…(More)”
Recommendations for Better Sharing of Climate Data
Creative Commons: “…the culmination of a nine-month research initiative from our Open Climate Data project. These guidelines are a result of collaboration between Creative Commons, government agencies and intergovernmental organizations. They mark a significant milestone in our ongoing effort to enhance the accessibility, sharing, and reuse of open climate data to address the climate crisis. Our goal is to share strategies that align with existing data sharing principles and pave the way for a more interconnected and accessible future for climate data.
Our recommendations offer practical steps and best practices, crafted in collaboration with key stakeholders and organizations dedicated to advancing open practices in climate data. We provide recommendations for 1) legal and licensing terms, 2) using metadata values for attribution and provenance, and 3) management and governance for better sharing.
Opening climate data requires an examination of the public’s legal rights to access and use the climate data, often dictated by copyright and licensing. This legal detail is sometimes missing from climate data sharing and legal interoperability conversations. Our recommendations suggest two options: Option A: CC0 + Attribution Request, in order to maximize reuse by dedicating climate data to the public domain, plus a request for attribution; and Option B: CC BY 4.0, for retaining data ownership and legal enforcement of attribution. We address how to navigate license stacking and attribution stacking for climate data hosts and for users working with multiple climate data sources.
We also propose standardized human- and machine-readable metadata values that enhance transparency, reduce guesswork, and ensure broader accessibility to climate data. We built upon existing model metadata schemas and standards, including those that address license and attribution information. These recommendations address a gap and provide metadata schema that standardize the inclusion of upfront, clear values related to attribution, licensing and provenance.
Lastly, we highlight four key aspects of effective climate data management: designating a dedicated technical managing steward, designating a legal and/or policy steward, encouraging collaborative data sharing, and regularly revisiting and updating data sharing policies in accordance with parallel open data policies and standards…(More)”.
Network architecture for global AI policy
Article by Cameron F. Kerry, Joshua P. Meltzer, Andrea Renda, and Andrew W. Wyckoff: “We see efforts to consolidate international AI governance as premature and ill-suited to respond to the immense, complex, novel, challenges of governing advanced AI, and the current diverse and decentralized efforts as beneficial and the best fit for this complex and rapidly developing technology.
Exploring the vast terra incognita of AI, realizing its opportunities, and managing its risks requires governance that can adapt and respond rapidly to AI risks as they emerge, develop deep understanding of the technology and its implications, and mobilize diverse resources and initiatives to address the growing global demand for access to AI. No one government or body will have the capacity to take on these challenges without building multiple coalitions and working closely with experts and institutions in industry, philanthropy, civil society, and the academy.
A distributed network of networks can more effectively address the challenges and opportunities of AI governance than a centralized system. Like the architecture of the interconnected information technology systems on which AI depends, such a decentralized system can bring to bear redundancy, resiliency, and diversity by channeling the functions of AI governance toward the most timely and effective pathways in iterative and diversified processes, providing agility against setbacks or failures at any single point. These multiple centers of effort can harness the benefit of network effects and parallel processing.
We explore this model of distributed and iterative AI governance below…(More)”.
So You’ve Decided To Carry Your Brain Around
Article by Nicholas Clairmont: “If the worry during the Enlightenment, as mathematician Isaac Milner wrote in 1794, was that ‘the great and high’ have ‘forgotten that they have souls,’ then today the worry is that many of us have forgotten that we have bodies.” So writes Christine Rosen, senior fellow at the American Enterprise Institute and senior editor of this journal, in her new book, The Extinction of Experience: Being Human in a Disembodied World.
A sharp articulation of the problem, attributed to Thomas Edison, is that “the chief function of the body is to carry the brain around.” Today, the “brain” can be cast virtually into text or voice communication with just about anyone on Earth, and information and entertainment can be delivered almost immediately to wherever a brain happens to be carried around. But we forget how recently this became possible.
Can it really be less than two decades ago that life started to be revolutionized by the smartphone, the technology that made it possible for people of Edison’s persuasion to render the body seemingly redundant? The iPhone was released in 2007. But even by 2009, according to Pew Research, only a third of American adults “had at some point used the internet on their mobile device.” It wasn’t until 2012 that half did so at least occasionally. And then there is that other technology that took off over the same time period: Facebook and Twitter and Instagram and TikTok and the rest of the social networks that allow us to e-commune and that induce us to see everything we do in light of how it might look to others online.
For such a drastic and recent change, it is one we have largely accepted as just a fact. All the public hand-wringing about it has arguably not made a dent in our actual habits. And maybe that’s because we have underestimated the problem with how it has changed us…(More)”.