Illuminating GDP


Money and Banking: “GDP figures are ‘man-made’ and therefore unreliable,” reported remarks of Li Keqiang (then Communist Party secretary of the northeastern Chinese province of Liaoning), March 12, 2007.

Satellites are great. It is hard to imagine living without them. GPS navigation is just the tip of the iceberg. Taking advantage of the immense amounts of information collected over decades, scientists have been using satellite imagery to study a broad array of questions, ranging from agricultural land use to the impact of climate change to the geographic constraints on cities (see here for a recent survey).

One of the most well-known economic applications of satellite imagery is to use night-time illumination to enhance the accuracy of various reported measures of economic activity. For example, national statisticians in countries with poor information collection systems can employ information from satellites to improve the quality of their nationwide economic data (see here). Even where governments have relatively high-quality statistics at a national level, it remains difficult and costly to determine local or regional levels of activity. For example, while production may occur in one jurisdiction, the income generated may be reported in another. At a sufficiently high resolution, satellite tracking of night-time light emissions can help address this question (see here).

But satellite imagery is not just an additional source of information on economic activity, it is also a neutral one that is less prone to manipulation than standard accounting data. This makes it is possible to use information on night-time light to monitor the accuracy of official statistics. And, as we suggest later, the willingness of observers to apply a “satellite correction” could nudge countries to improve their own data reporting systems in line with recognized international standards.

As Luis Martínez inquires in his recent paper, should we trust autocrats’ estimates of GDP? Even in relatively democratic countries, there are prominent examples of statistical manipulation (recall the cases of Greek sovereign debt in 2009 and Argentine inflation in 2014). In the absence of democratic checks on the authorities, Martínez finds even greater tendencies to distort the numbers….(More)”.

Tanzania’s government is casting itself as the nation’s sole custodian of data


Abdi Latif Dahir at Quartz: “Tanzania’s government wants to have exclusive control over who collects and shares data about the country.

In a bill tabled in parliament this week, the government aims to criminalize the collection, analysis, and dissemination of any data without first obtaining authorization from the country’s chief statistician. The key amendments to the Statistics Act also prohibit researchers from publicly releasing any data “which is intended to invalidate, distort, or discredit official statistics.” Any person who does anything to the contrary could merit a fine of not less than 10 million shillings ($4,400), a jail term of three years, or both.

Officials have said the amendments are being passed as a measure to promote peace and security and to stop the publication of fake information. Critics, however, argue the laws will curtail both the collection of crucial data and the ability to fact-check and hold official sources accountable. Opposition members in parliament also said the law could target institutions and scholars releasing data that isn’t in favor of the government….

the move to ban independent data collection could be damaging given how much quality information could help in national development. African nations increasingly lack evidence-based research that could inform how they formulate national policies. And many times in Tanzania, independent actors fulfill this gap, providing data on flood-prone areas to avoid disasters, or documenting citizens’ needs—something that isn’t captured in official government statistics….(More)”.

Resource Guide to Data Governance and Security


National Neighborhood Indicators Partnership (NNIP): “Any organization that collects, analyzes, or disseminates data should establish formal systems to manage data responsibly, protect confidentiality, and document data files and procedures. In doing so, organizations will build a reputation for integrity and facilitate appropriate interpretation and data sharing, factors that contribute to an organization’s long-term sustainability.

To help groups improve their data policies and practices, this guide assembles lessons from the experiences of partners in the National Neighborhood Indicators Partnership network and similar organizations. The guide presents advice and annotated resources for the three parts of a data governance program: protecting privacy and human subjects, ensuring data security, and managing the data life cycle. While applicable for non-sensitive data, the guide is geared for managing confidential data, such as data used in integrated data systems or Pay-for-Success programs….(More)”.

European science funders ban grantees from publishing in paywalled journals


Martin Enserink at Science: “Frustrated with the slow transition toward open access (OA) in scientific publishing, 11 national funding organizations in Europe turned up the pressure today. As of 2020, the group, which jointly spends about €7.6 billion on research annually, will require every paper it funds to be freely available from the moment of publication. In a statement, the group said it will no longer allow the 6- or 12-month delays that many subscription journals now require before a paper is made OA, and it won’t allow publication in so-called hybrid journals, which charge subscriptions but also make individual papers OA for an extra fee.

The move means grantees from these 11 funders—which include the national funding agencies in the United Kingdom, the Netherlands, and France as well as Italy’s National Institute for Nuclear Physics—will have to forgo publishing in thousands of journals, including high-profile ones such as NatureScienceCell, and The Lancet, unless those journals change their business model. “We think this could create a tipping point,” says Marc Schiltz, president of Science Europe, the Brussels-based association of science organizations that helped coordinate the plan. “Really the idea was to make a big, decisive step—not to come up with another statement or an expression of intent.”

The announcement delighted many OA advocates. “This will put increased pressure on publishers and on the consciousness of individual researchers that an ecosystem change is possible,” says Ralf Schimmer, head of Scientific Information Provision at the Max Planck Digital Library in Munich, Germany. Peter Suber, director of the Harvard Library Office for Scholarly Communication, calls the plan “admirably strong.” Many other funders support OA, but only the Bill & Melinda Gates Foundation applies similarly stringent requirements for “immediate OA,” Suber says. The European Commission and the European Research Council support the plan; although they haven’t adopted similar requirements for the research they fund, a statement by EU Commissioner for Research, Science and Innovation Carlos Moedas suggests they may do so in the future and urges the European Parliament and the European Council to endorse the approach….(More)”.

The UK’s Gender Pay Gap Open Data Law Has Flaws, But Is A Positive Step Forward


Article by Michael McLaughlin: “Last year, the United Kingdom enacted a new regulation requiring companies to report information about their gender pay gap—a measure of the difference in average pay between men and women. The new rules are a good example of how open data can drive social change. However, the regulations have produced some misleading statistics, highlighting the importance of carefully crafting reporting requirements to ensure that they produce useful data.

In the UK, nearly 11,000 companies have filed gender pay gap reports, which include both the difference between the mean and median hourly pay rates for men and women as well the difference in bonuses. And the initial data reveals several interesting findings. Median pay for men is 11.8 percent higher than for women, on average, and nearly 87 percent of companies pay men more than women on average. In addition, over 1,000 firms had a median pay gap greater than 30 percent. The sectors with the highest pay gaps—construction, finance, and insurance—each pay men at least 20 percent more than women. A major reason for the gap is a lack of women in senior positions—UK women actually make more than men between the ages of 22-29. The total pay gap is also a result of more women holding part-time jobs.

However, as detractors note, the UK’s data can be misleading. For example, the data overstates the pay gap on bonuses because it does not adjust these figures for hours worked. More women work part-time than men, so it makes sense that women would receive less in bonus pay when they work less. The data also understates the pay gap because it excludes the high compensation of partners in organizations such as law firms, a group that includes few women. And it is important to note that—by definition—the pay gap data does not compare the wages of men and women working the same jobs, so the data says nothing about whether women receive equal pay for equal work.

Still, publication of the data has sparked an important national conversation. Google searches in the UK for the phrase “gender pay gap” experienced a 12-month high the week the regulations began enforcement, and major news sites like Financial Times have provided significant coverage of the issue by analyzing the reported data. While it is too soon to tell if the law will change employer behavior, such as businesses hiring more female executives, or employee behavior, such as women leaving companies or fields that pay less, countries with similar reporting requirements, such as Belgium, have seen the pay gap narrow following implementation of their rules.

Requiring companies to report this data to the government may be the only way to obtain gender pay gap data, because evidence suggests that the private sector will not produce this data on its own. Only 300 UK organizations joined a voluntary government program to report their gender pay gap in 2011, and as few as 11 actually published the data. Crowdsourced efforts, where women voluntary report their pay, have also suffered from incomplete data. And even complete data does not illuminate variables such as why women may work in a field that pays less….(More)”.

Following Fenno: Learning from Senate Candidates in the Age of Social Media and Party Polarization


David C.W. Parker  at The Forum: “Nearly 40 years ago, Richard Fenno published Home Style, a seminal volume explaining how members of Congress think about and engage in the process of representation. To accomplish his task, he observed members of Congress as they crafted and communicated their representational styles to the folks back home in their districts. The book, and Fenno’s ensuing research agenda, served as a clarion call to move beyond sophisticated quantitative analyses of roll call voting and elite interviews in Washington, D.C. to comprehend congressional representation. Instead, Fenno argued, political scientists are better served by going home with members of Congress where “their perceptions of their constituencies are shaped, sharpened, or altered” (Fenno 1978, p. xiii). These perceptions of constituencies fundamentally shape what members of Congress do at home and in Washington. If members of Congress are single-minded seekers of reelection, as we often assume, then political scientists must begin with the constituent relationship essential to winning reelection. Go home, Fenno says, to understand Congress.

There are many ways constituency relationships can be understood and uncovered; the preferred method for Fenno is participant observation, which he variously terms as “soaking and poking” or “just hanging around.” Although it sounds easy enough to sit and watch, good participant observation requires many considerations (as Fenno details in a thorough appendix to Home Style). In this appendix, and in another series of essays, Fenno grapples forthrightly with the tough choices researchers must consider when watching and learning from politicians.

In this essay, I respond to Fenno’s thought-provoking methodological treatise in Home Style and the ensuing collection of musings he published as Watching Politicians: Essays on Participant Observation. I do so for three reasons: First, I wish to reinforce Fenno’s call to action. As the study of political science has matured, it has moved away from engaging with politicians in the field across the various sub-fields, favoring statistical analyses. “Everyone cites Fenno, but no one does Fenno,” I recently opined, echoing another scholar commenting on Fenno’s work (Fenno 2013, p. 2; Parker 2015, p. 246). Unfortunately, that sentiment is supported by data (Grimmer 2013, pp. 13–19; Curry 2017). Although quantitative and formal analyses have led to important insights into the study of political behavior and institutions, politics is as important to our discipline as science. And in politics, the motives and concerns of people are important to witness, not just because they add complexity and richness to our stories, but because they aid in theory generation.1 Fenno’s study was exploratory, but is full of key theoretical insights relevant to explaining how members of Congress understand their constituencies and the ensuing political choices they make.

Second, to “do” participant observation requires understanding the choices the methodology imposes. This necessitates that those who practice this method of discovery document and share their experiences (Lin 2000). The more the prospective participant observer can understand the size of the choice set she faces and the potential consequences at each decision point in advance, the better her odds of avoiding unanticipated consequences with both immediate and long-term research ramifications. I hope that adding my cumulative experiences to this ongoing methodological conversation will assist in minimizing both unexpected and undesirable consequences for those who follow into the field. Fenno is open about his own choices, and the difficult decisions he faced as a participant observer. Encouraging scholars to engage in participant observation is only half the battle. The other half is to encourage interested scholars to think about those same choices and methodological considerations, while acknowledging that context precludes a one-size fits all approach. Fenno’s choices may not be your choices – and that might be just fine depending upon your circumstances. Fenno would wholeheartedly agree.

Finally, Congress and American politics have changed considerably from when Fenno embarked on his research in Home Style. At the end of his introduction, Fenno writes that “this book is about the early to mid-1970s only. These years were characterized by the steady decline of strong national party attachments and strong local party organizations. … Had these conditions been different, House members might have behaved differently in their constituencies” (xv). Developments since Fenno put down his pen include political parties polarizing to an almost unprecedented degree, partisan attachments strengthening among voters, and technology emerging to change fundamentally how politicians engage with constituents. In light of this evolution of political culture in Washington and at home, it is worth considering the consequences for the participant-observation research approach. Many have asked me if it is still possible to do such work in the current political environment, and if so, what are the challenges facing political scientists going into the field? This essay provides some answers.

I proceed as follows: First, I briefly discuss my own foray into the world of participant observation, which occurred during the 2012 Senate race in Montana. Second, I consider two important methodological considerations raised by Fenno: access and participation as an observer. Third, I relate these two issues to a final consideration: the development of social media and the consequences of this for the participant observation enterprise. Finally, I show the perils of social science divorced from context, as demonstrated by the recent Stanford-Dartmouth mailer scandal. I conclude with not just a plea for us to pick up where Fenno has left off, but by suggesting that more thinking like a participant observer would benefit the discipline as whole by reminding us of our ethical obligations as researchers to each other, and to the political community that we study…(More)”.

Better ways to measure the new economy


Valerie Hellinghausen and Evan Absher at Kauffman Foundation: “The old measure of “jobs numbers” as an economic indicator is shifting to new metrics to measure a new economy.

With more communities embracing inclusive entrepreneurial ecosystems as the new model of economic development, entrepreneurs, ecosystem builders, and government agencies – at all levels – need to work together on data-driven initiatives. While established measures still have a place, new metrics have the potential to deliver the timely and granular information that is more useful at the local level….

Three better ways to measure the new economy:

  1. National and local datasets:Numbers used to discuss the economy are national level and usually not very timely. These numbers are useful to understand large trends, but fail to capture local realities. One way to better measure local economies is to use local administrative datasets. There are many obstacles with this approach, but the idea is gaining interest. Data infrastructure, policies, and projects are building connections between local and national agencies. Joining different levels of government data will provide national scale and local specificity.
  1. Private and public data:The words private and public typically reflect privacy issues, but there is another public and private dimension. Public institutions possess vast amounts of data, but so do private companies. For instance, sites like PayPal, Square, Amazon, and Etsy possess data that could provide real-time assessment of an individual company’s financial health. The concept of credit and risk could be expanded to benefit those currently underserved, if combined with local administrative information like tax, wage, and banking data. Fair and open use of private data could open credit to currently underfunded entrepreneurs.
  1. New metrics:Developing connections between different datasets will result in new metrics of entrepreneurial activity: metrics that measure human connection, social capital, community creativity, and quality of life. Metrics that capture economic activity at the community level and in real time. For example, the Kauffman Foundation has funded research that uses labor data from private job-listing sites to better understand the match between the workforce entrepreneurs need and the workforce available within the immediate community. But new metrics are not enough, they must connect to the final goal of economic independence. Using new metrics to help ecosystems understand how policies and programs impact entrepreneurship is the final step to measuring local economies….(More)”.

An Overview of National AI Strategies


Medium Article by Tim Dutton: “The race to become the global leader in artificial intelligence (AI) has officially begun. In the past fifteen months, Canada, China, Denmark, the EU Commission, Finland, France, India, Italy, Japan, Mexico, the Nordic-Baltic region, Singapore, South Korea, Sweden, Taiwan, the UAE, and the UK have all released strategies to promote the use and development of AI. No two strategies are alike, with each focusing on different aspects of AI policy: scientific research, talent development, skills and education, public and private sector adoption, ethics and inclusion, standards and regulations, and data and digital infrastructure.

This article summarizes the key policies and goals of each strategy, as well as related policies and initiatives that have announced since the release of the initial strategies. It also includes countries that have announced their intention to develop a strategy or have related AI policies in place….(More)”.

How Social Media Came To The Rescue After Kerala’s Floods


Kamala Thiagarajan at NPR: Devastating rainfall followed by treacherous landslides have killed 210 people since August 8 and displaced over a million in the southern Indian state of Kerala. India’s National Disaster Relief Force launched its biggest ever rescue operation in the state, evacuating over 10,000 people. The Indian army and the navy were deployed as well.

But they had some unexpected assistance.

Thousands of Indian citizens used mobile phone technology and social media platforms to mobilize relief efforts….

In many other cases, it was ordinary folk who harnessed social media and their own resources to play a role in relief and rescue efforts.

As the scope of the disaster became clear, the state government of Kerala reached out to software engineers from around the world. They joined hands with the state-government-run Information Technology Cell, coming together on Slack, a communications platform, to create the website www.keralarescue.in

The website allowed volunteers who were helping with disaster relief in Kerala’s many flood-affected districts to share the needs of stranded people so that authorities could act.

Johann Binny Kuruvilla, a travel blogger, was one of many volunteers. He put in 14-hour shifts at the District Emergency Operations Center in Ernakulam, Kochi.

The first thing he did, he says, was to harness the power of Whatsapp, a critical platform for dispensing information in India. He joined five key Whatsapp groups with hundreds of members who were coordinating rescue and relief efforts. He sent them his number and mentioned that he would be in a position to communicate with a network of police, army and navy personnel. Soon he was receiving an average of 300 distress calls a day from people marooned at home and faced with medical emergencies.

No one trained volunteers like Kuruvilla. “We improvised and devised our own systems to store data,” he says. He documented the information he received on Excel spreadsheets before passing them on to authorities.

He was also the contact point for INSPIRE, a fraternity of mechanical engineering students at a government-run engineering college at Barton Hill in Kerala. The students told him they had made nearly 300 power banks for charging phones, using four 1.5 volt batteries and cables, and, he says, “asked us if we could help them airdrop it to those stranded in flood-affected areas.” A power bank could boost a mobile phone’s charge by 20 percent in minutes, which could be critical for people without access to electricity. Authorities agreed to distribute the power banks, wrapping them in bubble wrap and airdropping them to areas where people were marooned.

Some people took to social media to create awareness of the aftereffects of the flooding.

Anand Appukuttan, 38, is a communications designer. Working as a consultant he currently lives in Chennai, 500 miles by road from Kerala, and designs infographics, mobile apps and software for tech companies. Appukuttan was born and brought up in Kottayam, a city in South West Kerala. When he heard of the devastation caused by the floods, he longed to help. A group of experts on disaster management reached out to him over Facebook on August 18, asking if he would share his time and expertise in creating flyers for awareness; he immediately agreed….(More)”.

World War Web


Special issue of Foreign Affairs: “The last few decades have witnessed the growth of an American-sponsored Internet open to all. But that was then; conditions have changed.

History is filled with supposed lost utopias, and there is no greater cliché than to see one’s own era as a lamentable decline from a previous golden age. Sometimes, however, clichés are right. And as we explored the Internet’s future for this issue’s lead package, it became clear this was one of those times. Contemplating where we have come from digitally and where we are heading, it’s hard not to feel increasingly wistful and nostalgic.

The last few decades have witnessed the growth of an American-sponsored Internet open to all, and that has helped tie the world together, bringing wide-ranging benefits to billions. But that was then; conditions have changed.

Other great powers are contesting U.S. digital leadership, pushing their own national priorities. Security threats appear and evolve constantly. Platforms that were supposed to expand and enrich the marketplace of ideas have been hijacked by trolls and bots and flooded with disinformation. And real power is increasingly concentrated in the hands of a few private tech giants, whose self-interested choices have dramatic consequences for the entire world around them.

Whatever emerges from this melee, it will be different from, and in many ways worse than, what we have now.

Adam Segal paints the big picture well. “The Internet has long been an American project,” he writes. “Yet today, the United States has ceded leadership in cyberspace to China.” What will happen if Beijing continues its online ascent? “The Internet will be less global and less open. A major part of it will run Chinese applications over Chinese-made hardware. And Beijing will reap the economic, diplomatic, national security, and intelligence benefits that once flowed to Washington.”

Nandan Nilekani, a co-founder of Infosys, outlines India’s unique approach to these issues, which is based on treating “digital infrastructure as a public good and data as something that citizens deserve access to.” Helen Dixon, Ireland’s data protection commissioner, presents a European perspective, arguing that giving individuals control over their own data—as the General Data Protection Regulation, the EU’s historic new regulatory effort, aims to do—is essential to restoring the Internet’s promise. And Karen Kornbluh, a veteran U.S. policymaker, describes how the United States dropped the digital ball and what it could do to pick it up again.

Finally, Michèle Flournoy and Michael Sulmeyer explain the new realities of cyberwarfare, and Viktor Mayer-Schönberger and Thomas Ramge consider the problems caused by Big Tech’s hoarding of data and what can be done to address it.

A generation from now, people across the globe will no doubt revel in the benefits the Internet has brought. But the more thoughtful among them will also lament the eclipse of the founders’ idealistic vision and dream of a world connected the way it could—and should— have been….(More)”.