Handbook on Participatory Governance


Book edited by Hubert Heinelt: “Can participatory governance really improve the quality of democracy? Concentrating on democracy beyond governmental structures, this Handbook argues that it is a political task to engage individuals at all levels of governance.

The Handbook on Participatory Governance reveals that transforming governance arrangements does in fact enhance democracy and that the democratic quality of participatory governance is crucial. The contributors reflect on the notion of democracy and participatory governance and how they relate to each other. Case studies are presented from regional, national and international levels, to identify how governance can be turned into a participatory form. With chapters reviewing participatory governance’s role alongside power, science and employment relations, innovative ideas for future progress in participatory governance are presented….(More)”.

People Power


Report from the Commission on the Future of Localism (UK): “…When we think about power we tend to look upwards – towards Westminster-based institutions and elected politicians. Those who wish to see greater localism often ask politicians to give it away and push power downwards. But this is looking at things the wrong way round. Instead, we need to start with the power of community. The task of our political system should be to support this, harness it, and reflect it in our national debate.

Screen Shot 2018-01-23 at 8.24.32 PM

Our Commission has heard evidence about what makes a powerful community. While different communities build and experience power in different ways, there are common sources. We heard how the power of any community lies with its people, their collective ideas, innovation, creativity and local knowledge, as well as their sense of belonging, connectedness and shared identity. We need to bring this into political life much more effectively via a renewed effort to foster localism in future.

However, our Commission has also heard about a fundamental imbalance of power that is preventing this power of community from coming to life and restricting collective agency: top-down decisions leaving community groups and local councils unable to make the change they know their neighbourhood needs; a lack of trust and risk aversion from public bodies, dampening community energy; a lack of control and access to local resources, limiting the scope of local action….(More)”.

StatCan now crowdsourcing cannabis data


Kyle Duggan at iPolitics: “The national statistics agency is launching a crowdsourcing project to find out how much weed Canadians are consuming and how much it costs them.

Statistics Canada is searching for the best picture of consumption it can find ahead of legalization, and is turning to average Canadians to improve its rough estimates about a product that’s largely been accessed illegally by the population.

Thursday it released a suite of “experimental” data that make up its current best guesses on Canadian consumption habits, along with a crowdsourcing website and app to get its own estimates – a project officials said is an experiment itself.

Statscan is also rolling out a quarterly cannabis survey this year.

The agency has been combing through historical research on legal and illegal cannabis prices, scraping price data from illegal vendors online and, for some data, is relying largely on the self-reporting website priceofweed.com to assemble as much pot information as possible, even if it’s not perfect data.

The agency has been quietly preparing for the July legalization deadline by compiling health, justice and economic datasets and scouring to fill in the blanks where it can. Come July, legal cannabis will suddenly also need to be rolled into other important data products, like the GDP accounts….(More)”.

Congress Is Broken. CrowdLaw Could Help Fix It.


Beth Noveck in Forbes: “The way Congress makes law is simply no longer viable. In David Schoenbrod’s recent book DC Confidential, he outlines “five tricks” politicians use to take credit in front of television cameras in order to further political party agendas while passing the blame and the buck to future generations for bad legislation. Although Congress makes the laws that govern all Americans, people also feel disenfranchised. One study concludes that “the preferences of the average American appear to have only a minuscule, near-zero, statistically non-significant impact upon public policy.” But technology offers the promise of improving both the quality and accountability of lawmaking by opening up the process to more and more diverse expertise and input from the public at every stage of the legislative process. We call such open and participatory lawmaking: “CrowdLaw.”

Moving Beyond the Ballot Box

Around the world, there are already over two dozen examples of local legislatures and national parliaments turning to the internet to improve the legitimacy and effectiveness of the laws they make; we need to do the same here if we are to begin to fix congressional dysfunction.

For example, Finland’s Citizen’s Initiative Act at the national level, like Madrid’s Decide initiative at the local level, allows any member of the public with the requisite signatures to propose new legislation, meaning that not only interest groups and politicians get to set the agenda for lawmaking.

In France, the Parlement & Citoyens platform allows the public to respond to a problem posed by a representative by contributing information about both causes and solutions. Relevant citizen input is then synthesized, debated, and incorporated into the resulting draft legislation. This brings greater empiricism into the legislative process through public contribution of expertise….(More)”.

They Are Watching You—and Everything Else on the Planet


Cover article by Robert Draper for Special Issue of the National Geographic: “Technology and our increasing demand for security have put us all under surveillance. Is privacy becoming just a memory?…

In 1949, amid the specter of European authoritarianism, the British novelist George Orwell published his dystopian masterpiece 1984, with its grim admonition: “Big Brother is watching you.” As unsettling as this notion may have been, “watching” was a quaintly circumscribed undertaking back then. That very year, 1949, an American company released the first commercially available CCTV system. Two years later, in 1951, Kodak introduced its Brownie portable movie camera to an awestruck public.

Today more than 2.5 trillion images are shared or stored on the Internet annually—to say nothing of the billions more photographs and videos people keep to themselves. By 2020, one telecommunications company estimates, 6.1 billion people will have phones with picture-taking capabilities. Meanwhile, in a single year an estimated 106 million new surveillance cameras are sold. More than three million ATMs around the planet stare back at their customers. Tens of thousands of cameras known as automatic number plate recognition devices, or ANPRs, hover over roadways—to catch speeding motorists or parking violators but also, in the case of the United Kingdom, to track the comings and goings of suspected criminals. The untallied but growing number of people wearing body cameras now includes not just police but also hospital workers and others who aren’t law enforcement officers. Proliferating as well are personal monitoring devices—dash cams, cyclist helmet cameras to record collisions, doorbells equipped with lenses to catch package thieves—that are fast becoming a part of many a city dweller’s everyday arsenal. Even less quantifiable, but far more vexing, are the billions of images of unsuspecting citizens captured by facial-recognition technology and stored in law enforcement and private-sector databases over which our control is practically nonexistent.

Those are merely the “watching” devices that we’re capable of seeing. Presently the skies are cluttered with drones—2.5 million of which were purchased in 2016 by American hobbyists and businesses. That figure doesn’t include the fleet of unmanned aerial vehicles used by the U.S. government not only to bomb terrorists in Yemen but also to help stop illegal immigrants entering from Mexico, monitor hurricane flooding in Texas, and catch cattle thieves in North Dakota. Nor does it include the many thousands of airborne spying devices employed by other countries—among them Russia, China, Iran, and North Korea.

We’re being watched from the heavens as well. More than 1,700 satellites monitor our planet. From a distance of about 300 miles, some of them can discern a herd of buffalo or the stages of a forest fire. From outer space, a camera clicks and a detailed image of the block where we work can be acquired by a total stranger….

This is—to lift the title from another British futurist, Aldous Huxley—our brave new world. That we can see it coming is cold comfort since, as Carnegie Mellon University professor of information technology Alessandro Acquisti says, “in the cat-and-mouse game of privacy protection, the data subject is always the weaker side of the game.” Simply submitting to the game is a dispiriting proposition. But to actively seek to protect one’s privacy can be even more demoralizing. University of Texas American studies professor Randolph Lewis writes in his new book, Under Surveillance: Being Watched in Modern America, “Surveillance is often exhausting to those who really feel its undertow: it overwhelms with its constant badgering, its omnipresent mysteries, its endless tabulations of movements, purchases, potentialities.”

The desire for privacy, Acquisti says, “is a universal trait among humans, across cultures and across time. You find evidence of it in ancient Rome, ancient Greece, in the Bible, in the Quran. What’s worrisome is that if all of us at an individual level suffer from the loss of privacy, society as a whole may realize its value only after we’ve lost it for good.”…(More)”.

Extracting crowd intelligence from pervasive and social big data


Introduction by Leye Wang, Vincent Gauthier, Guanling Chen and Luis Moreira-Matias of Special Issue of the Journal of Ambient Intelligence and Humanized Computing: “With the prevalence of ubiquitous computing devices (smartphones, wearable devices, etc.) and social network services (Facebook, Twitter, etc.), humans are generating massive digital traces continuously in their daily life. Considering the invaluable crowd intelligence residing in these pervasive and social big data, a spectrum of opportunities is emerging to enable promising smart applications for easing individual life, increasing company profit, as well as facilitating city development. However, the nature of big data also poses fundamental challenges on the techniques and applications relying on the pervasive and social big data from multiple perspectives such as algorithm effectiveness, computation speed, energy efficiency, user privacy, server security, data heterogeneity and system scalability. This special issue presents the state-of-the-art research achievements in addressing these challenges. After the rigorous review process of reviewers and guest editors, eight papers were accepted as follows.

The first paper “Automated recognition of hypertension through overnight continuous HRV monitoring” by Ni et al. proposes a non-invasive way to differentiate hypertension patients from healthy people with the pervasive sensors such as a waist belt. To this end, the authors train a machine learning model based on the heart rate data sensed from waists worn by a crowd of people, and the experiments show that the detection accuracy is around 93%.

The second paper “The workforce analyzer: group discovery among LinkedIn public profiles” by Dai et al. describes two users’ group discovery methods among LinkedIn public profiles. One is based on K-means and another is based on SVM. The authors contrast results of both methods and provide insights about the trending professional orientations of the workforce from an online perspective.

The third paper “Tweet and followee personalized recommendations based on knowledge graphs” by Pla Karidi et al. present an efficient semantic recommendation method that helps users filter the Twitter stream for interesting content. The foundation of this method is a knowledge graph that can represent all user topics of interest as a variety of concepts, objects, events, persons, entities, locations and the relations between them. An important advantage of the authors’ method is that it reduces the effects of problems such as over-recommendation and over-specialization.

The fourth paper “CrowdTravel: scenic spot profiling by using heterogeneous crowdsourced data” by Guo et al. proposes CrowdTravel, a multi-source social media data fusion approach for multi-aspect tourism information perception, which can provide travelling assistance for tourists by crowd intelligence mining. Experiments over a dataset of several popular scenic spots in Beijing and Xi’an, China, indicate that the authors’ approach attains fine-grained characterization for the scenic spots and delivers excellent performance.

The fifth paper “Internet of Things based activity surveillance of defence personnel” by Bhatia et al. presents a comprehensive IoT-based framework for analyzing national integrity of defence personnel with consideration to his/her daily activities. Specifically, Integrity Index Value is defined for every defence personnel based on different social engagements, and activities for detecting the vulnerability to national security. In addition to this, a probabilistic decision tree based automated decision making is presented to aid defence officials in analyzing various activities of a defence personnel for his/her integrity assessment.

The sixth paper “Recommending property with short days-on-market for estate agency” by Mou et al. proposes an estate with short days-on-market appraisal framework to automatically recommend those estates using transaction data and profile information crawled from websites. Both the spatial and temporal characteristics of an estate are integrated into the framework. The results show that the proposed framework can estimate accurately about 78% estates.

The seventh paper “An anonymous data reporting strategy with ensuring incentives for mobile crowd-sensing” by Li et al. proposes a system and a strategy to ensure anonymous data reporting while ensuring incentives simultaneously. The proposed protocol is arranged in five stages that mainly leverage three concepts: (1) slot reservation based on shuffle, (2) data submission based on bulk transfer and multi-player dc-nets, and (3) incentive mechanism based on blind signature.

The last paper “Semantic place prediction from crowd-sensed mobile phone data” by Celik et al. semantically classifes places visited by smart phone users utilizing the data collected from sensors and wireless interfaces available on the phones as well as phone usage patterns, such as battery level, and time-related information, with machine learning algorithms. For this study, the authors collect data from 15 participants at Galatasaray University for 1 month, and try different classification algorithms such as decision tree, random forest, k-nearest neighbour, naive Bayes, and multi-layer perceptron….(More)”.

The World’s Biggest Biometric Database Keeps Leaking People’s Data


Rohith Jyothish at FastCompany: “India’s national scheme holds the personal data of more than 1.13 billion citizens and residents of India within a unique ID system branded as Aadhaar, which means “foundation” in Hindi. But as more and more evidence reveals that the government is not keeping this information private, the actual foundation of the system appears shaky at best.

On January 4, 2018, The Tribune of India, a news outlet based out of Chandigarh, created a firestorm when it reported that people were selling access to Aadhaar data on WhatsApp, for alarmingly low prices….

The Aadhaar unique identification number ties together several pieces of a person’s demographic and biometric information, including their photograph, fingerprints, home address, and other personal information. This information is all stored in a centralized database, which is then made accessible to a long list of government agencies who can access that information in administrating public services.

Although centralizing this information could increase efficiency, it also creates a highly vulnerable situation in which one simple breach could result in millions of India’s residents’ data becoming exposed.

The Annual Report 2015-16 of the Ministry of Electronics and Information Technology speaks of a facility called DBT Seeding Data Viewer (DSDV) that “permits the departments/agencies to view the demographic details of Aadhaar holder.”

According to @databaazi, DSDV logins allowed third parties to access Aadhaar data (without UID holder’s consent) from a white-listed IP address. This meant that anyone with the right IP address could access the system.

This design flaw puts personal details of millions of Aadhaar holders at risk of broad exposure, in clear violation of the Aadhaar Act.…(More)”.

Who Owns Urban Mobility Data?


David Zipper at City Lab: “How, exactly, should policymakers respond to the rapid rise of new private mobility services such as ride-hailing, dockless shared bicycles, and microtransit?   … The most likely solution is via a data exchange that anonymizes rider data and gives public experts (and perhaps academic and private ones too) the ability to answer policy questions.

This idea is starting to catch on. The World Bank’s OpenTraffic project, founded in 2016, initially developed ways to aggregate traffic information derived from commercial fleets. A handful of private companies like Grab and Easy Taxi pledged their support when OpenTraffic launched. This fall, the project become part of SharedStreets, a collaboration between the National Association of City Transportation Officials (NACTO), the World Resources Institute, and the OECD’s International Transport Forum to pilot new ways of collecting and sharing a variety of public and private transport data. …(More).

Data-Intensive Approaches To Creating Innovation For Sustainable Smart Cities


Science Trends: “Located at the complex intersection of economic development and environmental change, cities play a central role in our efforts to move towards sustainability. Reducing air and water pollution, improving energy efficiency while securing energy supply, and minimizing vulnerabilities to disruptions and disturbances are interconnected and pose a formidable challenge, with their dynamic interactions changing in highly complex and unpredictable manners….

The Beijing City Lab demonstrates the usefulness of open urban data in mapping urbanization with a fine spatiotemporal scale and reflecting social and environmental dimensions of urbanization through visualization at multiple scales.

The basic principle of open data will generate significant opportunities for promoting inter-disciplinary and inter-organizational research, producing new data sets through the integration of different sources, avoiding duplication of research, facilitating the verification of previous results, and encouraging citizen scientists and crowdsourcing approaches. Open data also is expected to help governments promote transparency, citizen participation, and access to information in policy-making processes.

Despite a significant potential, however, there still remain numerous challenges in facilitating innovation for urban sustainability through open data. The scope and amount of data collected and shared are still limited, and the quality control, error monitoring, and cleaning of open data is also indispensable in securing the reliability of the analysis. Also, the organizational and legal frameworks of data sharing platforms are often not well-defined or established, and it is critical to address the interoperability between various data standards, balance between open and proprietary data, and normative and legal issues such as the data ownership, personal privacy, confidentiality, law enforcement, and the maintenance of public safety and national security….

These findings are described in the article entitled Facilitating data-intensive approaches to innovation for sustainability: opportunities and challenges in building smart cities, published in the journal Sustainability Science. This work was led by Masaru Yarime from the City University of Hong Kong….(More)”.

Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor


Book by Virginia Eubanks: “The State of Indiana denies one million applications for healthcare, foodstamps and cash benefits in three years—because a new computer system interprets any mistake as “failure to cooperate.” In Los Angeles, an algorithm calculates the comparative vulnerability of tens of thousands of homeless people in order to prioritize them for an inadequate pool of housing resources. In Pittsburgh, a child welfare agency uses a statistical model to try to predict which children might be future victims of abuse or neglect.

Since the dawn of the digital age, decision-making in finance, employment, politics, health and human services has undergone revolutionary change. Today, automated systems—rather than humans—control which neighborhoods get policed, which families attain needed resources, and who is investigated for fraud. While we all live under this new regime of data, the most invasive and punitive systems are aimed at the poor.

In Automating Inequality, Virginia Eubanks systematically investigates the impacts of data mining, policy algorithms, and predictive risk models on poor and working-class people in America. The book is full of heart-wrenching and eye-opening stories, from a woman in Indiana whose benefits are literally cut off as she lays dying to a family in Pennsylvania in daily fear of losing their daughter because they fit a certain statistical profile.

The U.S. has always used its most cutting-edge science and technology to contain, investigate, discipline and punish the destitute. Like the county poorhouse and scientific charity before them, digital tracking and automated decision-making hide poverty from the middle-class public and give the nation the ethical distance it needs to make inhumane choices: which families get food and which starve, who has housing and who remains homeless, and which families are broken up by the state. In the process, they weaken democracy and betray our most cherished national values….(More)”.