New paper on “Collective allocation of science funding as an alternative to peer review”: “Publicly funded research involves the distribution of a considerable amount of money. Funding agencies such as the US National Science Foundation (NSF), the US National Institutes of Health (NIH) and the European Research Council (ERC) give billions of dollars or euros of taxpayers’ money to individual researchers, research teams, universities, and research institutes each year. Taxpayers accordingly expect that governments and funding agencies will spend their money prudently and efficiently.
Investing money to the greatest effect is not a challenge unique to research funding agencies and there are many strategies and schemes to choose from. Nevertheless, most funders rely on a tried and tested method in line with the tradition of the scientific community: the peer review of individual proposals to identify the most promising projects for funding. This method has been considered the gold standard for assessing the scientific value of research projects essentially since the end of the Second World War.
However, there is mounting critique of the use of peer review to direct research funding. High on the list of complaints is the cost, both in terms of time and money. In 2012, for example, NSF convened more than 17,000 scientists to review 53,556 proposals [1]. Reviewers generally spend a considerable time and effort to assess and rate proposals of which only a minority can eventually get funded. Of course, such a high rejection rate is also frustrating for the applicants. Scientists spend an increasing amount of time writing and submitting grant proposals. Overall, the scientific community invests an extraordinary amount of time, energy, and effort into the writing and reviewing of research proposals, most of which end up not getting funded at all. This time would be better invested in conducting the research in the first place.
Peer review may also be subject to biases, inconsistencies, and oversights. The need for review panels to reach consensus may lead to sub‐optimal decisions owing to the inherently stochastic nature of the peer review process. Moreover, in a period where the money available to fund research is shrinking, reviewers may tend to “play it safe” and select proposals that have a high chance of producing results, rather than more challenging and ambitious projects. Additionally, the structuring of funding around calls‐for‐proposals to address specific topics might inhibit serendipitous discovery, as scientists work on problems for which funding happens to be available rather than trying to solve more challenging problems.
The scientific community holds peer review in high regard, but it may not actually be the best possible system for identifying and supporting promising science. Many proposals have been made to reform funding systems, ranging from incremental changes to peer review—including careful selection of reviewers [2] and post‐hoc normalization of reviews [3]—to more radical proposals such as opening up review to the entire online population [4] or removing human reviewers altogether by allocating funds through an objective performance measure [5].
We would like to add another alternative inspired by the mathematical models used to search the internet for relevant information: a highly decentralized funding model in which the wisdom of the entire scientific community is leveraged to determine a fair distribution of funding. It would still require human insight and decision‐making, but it would drastically reduce the overhead costs and may alleviate many of the issues and inefficiencies of the proposal submission and peer review system, such as bias, “playing it safe”, or reluctance to support curiosity‐driven research.
Our proposed system would require funding agencies to give all scientists within their remit an unconditional, equal amount of money each year. However, each scientist would then be required to pass on a fixed percentage of their previous year’s funding to other scientists whom they think would make best use of the money (Fig 1). Every year, then, scientists would receive a fixed basic grant from their funding agency combined with an elective amount of funding donated by their peers. As a result of each scientist having to distribute a given percentage of their previous year’s budget to other scientists, money would flow through the scientific community. Scientists who are generally anticipated to make the best use of funding will accumulate more.”