The war over the peace business


Article by Tekendra Parmar: “At the second annual AI+ Expo in Washington, DC, in early June, war is the word of the day.

As a mix of Beltway bureaucrats, military personnel, and Washington’s consultant class peruse the expansive Walter E. Washington Convention Center, a Palantir booth showcases its latest in data-collection suites for “warfighters.” Lockheed Martin touts the many ways it is implementing AI throughout its weaponry systems. On the soundstage, the defense tech darling Mach Industries is selling its newest uncrewed aerial vehicles. “We’re living in a world with great-power competition,” the presenter says. “We can’t rule out the possibility of war — but the best way to prevent a war is deterrence,” he says, flanked by videos of drones flying through what looked like the rugged mountains and valleys of Kandahar.

Hosted by the Special Competitive Studies Project, a think tank led by former Google CEO Eric Schmidt, the expo says it seeks to bridge the gap between Silicon Valley entrepreneurs and Washington policymakers to “strengthen” America and its allies’ “competitiveness in critical technologies.”

One floor below, a startup called Anadyr Horizon is making a very different sales pitch, for software that seeks to prevent war rather than fight it: “Peace tech,” as the company’s cofounder Arvid Bell calls it. Dressed in white khakis and a black pinstripe suit jacket with a dove and olive branch pinned to his lapel (a gift from his husband), the former Harvard political scientist begins by noting that Russia’s all-out invasion of Ukraine had come as a surprise to many political scientists. But his AI software, he says, could predict it.

Long the domain of fantasy and science fiction, the idea of forecasting conflict has now become a serious pursuit. In Isaac Asimov’s 1950s “Foundation” series, the main character develops an algorithm that allows him to predict the decline of the Galactic Empire, angering its rulers and forcing him into exile. During the coronavirus pandemic, the US State Department experimented with AI fed with Twitter data to predict “COVID cases” and “violent events.” In its AI audit two years ago, the State Department revealed that it started training AI on “open-source political, social, and economic datasets” to predict “mass civilian killings.” The UN is also said to have experimented with AI to model the war in Gaza…(More)”… ..See also Kluz Prize for PeaceTech (Applications Open)

Fixing the US statistical infrastructure


Article by Nancy Potok and Erica L. Groshen: “Official government statistics are critical infrastructure for the information age. Reliable, relevant, statistical information helps businesses to invest and flourish; governments at the local, state, and national levels to make critical decisions on policy and public services; and individuals and families to invest in their futures. Yet surrounded by all manner of digitized data, one can still feel inadequately informed. A major driver of this disconnect in the US context is delayed modernization of the federal statistical system. The disconnect will likely worsen in coming months as the administration shrinks statistical agencies’ staffing, terminates programs (notably for health and education statistics), and eliminates unpaid external advisory groups. Amid this upheaval, might the administration’s appetite for disruption be harnessed to modernize federal statistics?

Federal statistics, one of the United States’ premier public goods, differ from privately provided data because they are privacy protected, aggregated to address relevant questions for decision-makers, constructed transparently, and widely available without a subscription. The private sector cannot be expected to adequately supply such statistical infrastructure. Yes, some companies collect and aggregate some economic data, such as credit card purchases and payroll information. But without strong underpinnings of a modern, federal information infrastructure, there would be large gaps in nationally consistent, transparent, trustworthy data. Furthermore, most private providers rely on public statistics for their internal analytics, to improve their products. They are among the many data users asking for more from statistical agencies…(More)”.

A New Paradigm for Fueling AI for the Public Good


Article by Kevin T. Frazier: “Imagine receiving this email in the near future: “Thank you for sharing data with the American Data Collective on May 22, 2025. After first sharing your workout data with SprintAI, a local startup focused on designing shoes for differently abled athletes, your data donation was also sent to an artificial intelligence research cluster hosted by a regional university. Your donation is on its way to accelerate artificial intelligence innovation and support researchers and innovators addressing pressing public needs!”

That is exactly the sort of message you could expect to receive if we made donations of personal data akin to blood donations—a pro-social behavior that may not immediately serve a donor’s individual needs but may nevertheless benefit the whole of the community. This vision of a future where data flow toward the public good is not science fiction—it is a tangible possibility if we address a critical bottleneck faced by innovators today.

Creating the data equivalent of blood banks may not seem like a pressing need or something that people should voluntarily contribute to, given widespread concerns about a few large artificial intelligence (AI) companies using data for profit-driven and, arguably, socially harmful ends. This narrow conception of the AI ecosystem fails to consider the hundreds of AI research initiatives and startups that have a desperate need for high-quality data. I was fortunate enough to meet leaders of those nascent AI efforts at Meta’s Open Source AI Summit in Austin, Texas. For example, I met with Matt Schwartz, who leads a startup that leans on AI to glean more diagnostic information from colonoscopies. I also connected with Edward Chang, a professor of neurological surgery at the University of California, San Francisco Weill Institute for Neurosciences, who relies on AI tools to discover new information on how and why our brains work. I also got to know Corin Wagen, whose startup is helping companies “find better molecules faster.” This is a small sample of the people leveraging AI for objectively good outcomes. They need your help. More specifically, they need your data.

A tragic irony shapes our current data infrastructure. Most of us share mountains of data with massive and profitable private parties—smartwatch companies, diet apps, game developers, and social media companies. Yet, AI labs, academic researchers, and public interest organizations best positioned to leverage our data for the common good are often those facing the most formidable barriers to acquiring the necessary quantity, quality, and diversity of data. Unlike OpenAI, they are not going to use bots to scrape the internet for data. Unlike Google and Meta, they cannot rely on their own social media platforms and search engines to act as perpetual data generators. And, unlike Anthropic, they lack the funds to license data from media outlets. So, while commercial entities amass vast datasets, frequently as a byproduct of consumer services and proprietary data acquisition strategies, mission-driven AI initiatives dedicated to public problems find themselves in a state of chronic data scarcity. This is not merely a hurdle—it is a systemic bottleneck choking off innovation where society needs it most, delaying or even preventing the development of AI tools that could significantly improve lives.

Individuals are, quite rightly, increasingly hesitant to share their personal information, with concerns about privacy, security, and potential misuse being both rampant and frequently justified by past breaches and opaque practices. Yet, in a striking contradiction, troves of deeply personal data are continuously siphoned by app developers, by tech platforms, and, often opaquely, by an extensive network of data brokers. This practice often occurs with minimal transparency and without informed consent concerning the full lifecycle and downstream uses of that data. This lack of transparency extends to how algorithms trained on this data make decisions that can impact individuals’ lives—from loan applications to job prospects—often without clear avenues for recourse or understanding, potentially perpetuating existing societal biases embedded in historical data…(More)”.

Sentinel Cities for Public Health


Article by Jesse Rothman, Paromita Hore & Andrew McCartor: “In 2017, a New York City health inspector visited the home of a 5-year-old child with an elevated blood lead level. With no sign of lead paint—the usual suspect in such cases—the inspector discovered dangerous levels of lead in a bright yellow container of “Georgian Saffron,” a spice obtained in the family’s home country. It was not the first case associated with the use of lead-containing Georgian spices—the NYC Health Department shared their findings with authorities in Georgia, which catalyzed a survey of children’s blood lead levels in Georgia, and led to increased regulatory enforcement and education. Significant declines in spice lead levels in the country have had ripple effects in NYC also: not only a drop in spice samples from Georgia containing detectable lead but also a significant reduction in blood lead levels among NYC children of Georgian ancestry.

This wasn’t a lucky break—it was the result of a systematic approach to transform local detection into global impact. Findings from local NYC surveillance are, of course, not limited to Georgian spices. Surveillance activities have identified a variety of lead-containing consumer products from around the world, from cosmetics and medicines to ceramics and other goods. Routinely surveying local stores for lead-containing products has resulted in the removal of over 30,000 hazardous consumer products from NYC store shelves since 2010.

How can we replicate and scale up NYC’s model to address the global crisis of lead poisoning?…(More)”.

The Loyalty Trap


Book by Jaime Lee Kucinskas: “…explores how civil servants navigated competing pressures and duties amid the chaos of the Trump administration, drawing on in-depth interviews with senior officials in the most contested agencies over the course of a tumultuous term. Jaime Lee Kucinskas argues that the professional culture and ethical obligations of the civil service stabilize the state in normal times but insufficiently prepare bureaucrats to cope with a president like Trump. Instead, federal employees became ensnared in intractable ethical traps, caught between their commitment to nonpartisan public service and the expectation of compliance with political directives. Kucinskas shares their quandaries, recounting attempts to preserve the integrity of government agencies, covert resistance, and a few bold acts of moral courage in the face of organizational decline and politicized leadership. A nuanced sociological account of the lessons of the Trump administration for democratic governance, The Loyalty Trap offers a timely and bracing portrait of the fragility of the American state…(More)”.

Participatory Approaches to Responsible Data Reuse and Establishing a Social License


Chapter by Stefaan Verhulst, Andrew J. Zahuranec & Adam Zable in Global Public Goods Communication (edited by Sónia Pedro Sebastião and Anne-Marie Cotton): “… examines innovative participatory processes for establishing a social license for reusing data as a global public good. While data reuse creates societal value, it can raise concerns and reinforce power imbalances when individuals and communities lack agency over how their data is reused. To address this, the chapter explores participatory approaches that go beyond traditional consent mechanisms. By engaging data subjects and stakeholders, these approaches aim to build trust and ensure data reuse benefits all parties involved.

The chapter presents case studies of participatory approaches to data reuse from various sectors. This includes The GovLab’s New York City “Data Assembly,” which engaged citizens to set conditions for reusing cell phone data during the COVID-19 response. These examples highlight both the potential and challenges of citizen engagement, such as the need to invest in data literacy and other resources to support meaningful public input. The chapter concludes by considering whether participatory processes for data reuse can foster digital self-determination…(More)”.

Data Integration, Sharing, and Management for Transportation Planning and Traffic Operations


Report by the National Academies of Sciences, Engineering, and Medicine: “Planning and operating transportation systems involves the exchange of large volumes of data that must be shared between partnering transportation agencies, private-sector interests, travelers, and intelligent devices such as traffic signals, ramp meters, and connected vehicles.

NCHRP Research Report 1121: Data Integration, Sharing, and Management for Transportation Planning and Traffic Operations, from TRB’s National Cooperative Highway Research Program, presents tools, methods, and guidelines for improving data integration, sharing, and management practices through case studies, proof-of-concept product developments, and deployment assistance…(More)”.

Can AI Agents Be Trusted?


Article by Blair Levin and Larry Downes: “Agentic AI has quickly become one of the most active areas of artificial intelligence development. AI agents are a level of programming on top of large language models (LLMs) that allow them to work towards specific goals. This extra layer of software can collect data, make decisions, take action, and adapt its behavior based on results. Agents can interact with other systems, apply reasoning, and work according to priorities and rules set by you as the principal.

Companies such as Salesforce have already deployed agents that can independently handle customer queries in a wide range of industries and applications, for example, and recognize when human intervention is required.

But perhaps the most exciting future for agentic AI will come in the form of personal agents, which can take self-directed action on your behalf. These agents will act as your personal assistant, handling calendar management, performing directed research and analysis, finding, negotiating for, and purchasing goods and services, curating content and taking over basic communications, learning and optimizing themselves along the way.

The idea of personal AI agents goes back decades, but the technology finally appears ready for prime-time. Already, leading companies are offering prototype personal AI agents to their customers, suppliers, and other stakeholders, raising challenging business and technical questions. Most pointedly: Can AI agents be trusted to act in our best interests? Will they work exclusively for us, or will their loyalty be split between users, developers, advertisers, and service providers? And how will be know?

The answers to these questions will determine whether and how quickly users embrace personal AI agents, and if their widespread deployment will enhance or damage business relationships and brand value…(More)”.

AI-Ready Federal Statistical Data: An Extension of Communicating Data Quality


Article by By Hoppe, Travis et al : “Generative Artificial Intelligence (AI) is redefining how people interact with public information and shaping how public data are consumed. Recent advances in large language models (LLMs) mean that more Americans are getting answers from AI chatbots and other AI systems, which increasingly draw on public datasets. The federal statistical community can take action to advance the use of federal statistics with generative AI to ensure that official statistics are front-and-center, powering these AIdriven experiences.
The Federal Committee on Statistical Methodology (FCSM) developed the Framework for Data Quality to help analysts and the public assess fitness for use of data sets. AI-based queries present new challenges, and the framework should be enhanced to meet them. Generative AI acts as an intermediary in the consumption of public statistical information, extracting and combining data with logical strategies that differ from the thought processes and judgments of analysts. For statistical data to be accurately represented and trustworthy, they need to be machine understandable and be able to support models that measure data quality and provide contextual information.
FCSM is working to ensure that federal statistics used in these AI-driven interactions meet the data quality dimensions of the Framework including, but not limited to, accessibility, timeliness, accuracy, and credibility. We propose a new collaborative federal effort to establish best practices for optimizing APIs, metadata, and data accessibility to support accurate and trusted generative AI results…(More)”.

The path for AI in poor nations does not need to be paved with billions


Editorial in Nature: “Coinciding with US President Donald Trump’s tour of Gulf states last week, Saudi Arabia announced that it is embarking on a large-scale artificial intelligence (AI) initiative. The proposed venture will have state backing and considerable involvement from US technology firms. It is the latest move in a global expansion of AI ambitions beyond the existing heartlands of the United States, China and Europe. However, as Nature India, Nature Africa and Nature Middle East report in a series of articles on AI in low- and middle-income countries (LMICs) published on 21 May (see go.nature.com/45jy3qq), the path to home-grown AI doesn’t need to be paved with billions, or even hundreds of millions, of dollars, or depend exclusively on partners in Western nations or China…, as a News Feature that appears in the series makes plain (see go.nature.com/3yrd3u2), many initiatives in LMICs aren’t focusing on scaling up, but on ‘scaling right’. They are “building models that work for local users, in their languages, and within their social and economic realities”.

More such local initiatives are needed. Some of the most popular AI applications, such as OpenAI’s ChatGPT and Google Gemini, are trained mainly on data in European languages. That would mean that the model is less effective for users who speak Hindi, Arabic, Swahili, Xhosa and countless other languages. Countries are boosting home-grown apps by funding start-up companies, establishing AI education programmes, building AI research and regulatory capacity and through public engagement.

Those LMICs that have started investing in AI began by establishing an AI strategy, including policies for AI research. However, as things stand, most of the 55 member states of the African Union and of the 22 members of the League of Arab States have not produced an AI strategy. That must change…(More)”.