Index: The Networked Public


The Living Library Index – inspired by the Harper’s Index – provides important statistics and highlights global trends in governance innovation. This installment focuses on the networked public and was originally published in 2014.

Global Overview

  • The proportion of global population who use the Internet in 2013: 38.8%, up 3 percentage points from 2012
  • Increase in average global broadband speeds from 2012 to 2013: 17%
  • Percent of internet users surveyed globally that access the internet at least once a day in 2012: 96
  • Hours spent online in 2012 each month across the globe: 35 billion
  • Country with the highest online population, as a percent of total population in 2012: United Kingdom (85%)
  • Country with the lowest online population, as a percent of total population in 2012: India (8%)
  • Trend with the highest growth rate in 2012: Location-based services (27%)
  • Years to reach 50 million users: telephone (75), radio (38), TV (13), internet (4)

Growth Rates in 2014

  • Rate at which the total number of Internet users is growing: less than 10% a year
  • Worldwide annual smartphone growth: 20%
  • Tablet growth: 52%
  • Mobile phone growth: 81%
  • Percentage of all mobile users who are now smartphone users: 30%
  • Amount of all web usage in 2013 accounted for by mobile: 14%
  • Amount of all web usage in 2014 accounted for by mobile: 25%
  • Percentage of money spent on mobile used for app purchases: 68%
  • Growth of BitCoin wallet between 2013 and 2014: 8 times increase
  • Number of listings on AirBnB in 2014: 550k, 83% growth year on year
  • How many buyers are on Alibaba in 2014: 231MM buyers, 44% growth year on year

Social Media

  • Number of Whatsapp messages on average sent per day: 50 billion
  • Number sent per day on Snapchat: 1.2 billion
  • How many restaurants are registered on GrubHub in 2014: 29,000
  • Amount the sale of digital songs fell in 2013: 6%
  • How much song streaming grew in 2013: 32%
  • Number of photos uploaded and shared every day on Flickr, Snapchat, Instagram, Facebook and Whatsapp combined in 2014: 1.8 billion
  • How many online adults in the U.S. use a social networking site of some kind: 73%
  • Those who use multiple social networking sites: 42%
  • Dominant social networking platform: Facebook, with 71% of online adults
  • Number of Facebook users in 2004, its founding year: 1 million
  • Number of monthly active users on Facebook in September 2013: 1.19 billion, an 18% increase year-over-year
  • How many Facebook users log in to the site daily: 63%
  • Instagram users who log into the service daily: 57%
  • Twitter users who are daily visitors: 46%
  • Number of photos uploaded to Facebook every minute: over 243,000, up 16% from 2012
  • How much of the global internet population is actively using Twitter every month: 21%
  • Number of tweets per minute: 350,000, up 250% from 2012
  • Fastest growing demographic on Twitter: 55-64 year age bracket, up 79% from 2012
  • Fastest growing demographic on Facebook: 45-54 year age bracket, up 46% from 2012
  • How many LinkedIn accounts are created every minute: 120, up 20% from 2012
  • The number of Google searches in 2013: 3.5 million, up 75% from 2012
  • Percent of internet users surveyed globally that use social media in 2012: 90
  • Percent of internet users surveyed globally that use social media daily: 60
  • Time spent social networking, the most popular online activity: 22%, followed by searches (21%), reading content (20%), and emails/communication (19%)
  • The average age at which a child acquires an online presence through their parents in 10 mostly Western countries: six months
  • Number of children in those countries who have a digital footprint by age 2: 81%
  • How many new American marriages between 2005-2012 began by meeting online, according to a nationally representative study: more than one-third 
  • How many of the world’s 505 leaders are on Twitter: 3/4
  • Combined Twitter followers: of 505 world leaders: 106 million
  • Combined Twitter followers of Justin Bieber, Katy Perry, and Lady Gaga: 122 million
  • How many times all Wikipedias are viewed per month: nearly 22 billion times
  • How many hits per second: more than 8,000 
  • English Wikipedia’s share of total page views: 47%
  • Number of articles in the English Wikipedia in December 2013: over 4,395,320 
  • Platform that reaches more U.S. adults between ages 18-34 than any cable network: YouTube
  • Number of unique users who visit YouTube each month: more than 1 billion
  • How many hours of video are watched on YouTube each month: over 6 billion, 50% more than 2012
  • Proportion of YouTube traffic that comes from outside the U.S.: 80%
  • Most common activity online, based on an analysis of over 10 million web users: social media
  • People on Twitter who recommend products in their tweets: 53%
  • People who trust online recommendations from people they know: 90%

Mobile and the Internet of Things

  • Number of global smartphone users in 2013: 1.5 billion
  • Number of global mobile phone users in 2013: over 5 billion
  • Percent of U.S. adults that have a cell phone in 2013: 91
  • Number of which are a smartphone: almost two thirds
  • Mobile Facebook users in March 2013: 751 million, 54% increase since 2012
  • Growth rate of global mobile traffic as a percentage of global internet traffic as of May 2013: 15%, up from .9% in 2009
  • How many smartphone owners ages 18–44 “keep their phone with them for all but two hours of their waking day”: 79%
  • Those who reach for their smartphone immediately upon waking up: 62%
  • Those who couldn’t recall a time their phone wasn’t within reach or in the same room: 1 in 4
  • Facebook users who access the service via a mobile device: 73.44%
  • Those who are “mobile only”: 189 million
  • Amount of YouTube’s global watch time that is on mobile devices: almost 40%
  • Number of objects connected globally in the “internet of things” in 2012: 8.7 billion
  • Number of connected objects so far in 2013: over 10 billion
  • Years from tablet introduction for tables to surpass desktop PC and notebook shipments: less than 3 (over 55 million global units shipped in 2013, vs. 45 million notebooks and 35 million desktop PCs)
  • Number of wearable devices estimated to have been shipped worldwide in 2011: 14 million
  • Projected number of wearable devices in 2016: between 39-171 million
  • How much of the wearable technology market is in the healthcare and medical sector in 2012: 35.1%
  • How many devices in the wearable tech market are fitness or activity trackers: 61%
  • The value of the global wearable technology market in 2012: $750 million
  • The forecasted value of the market in 2018: $5.8 billion
  • How many Americans are aware of wearable tech devices in 2013: 52%
  • Devices that have the highest level of awareness: wearable fitness trackers,
  • Level of awareness for wearable fitness trackers amongst American consumers: 1 in 3 consumers
  • Value of digital fitness category in 2013: $330 million
  • How many American consumers surveyed are aware of smart glasses: 29%
  • Smart watch awareness amongst those surveyed: 36%

Access

  • How much of the developed world has mobile broadband subscriptions in 2013: 3/4
  • How much of the developing world has broadband subscription in 2013: 1/5
  • Percent of U.S. adults that had a laptop in 2012: 57
  • How many American adults did not use the internet at home, at work, or via mobile device in 2013: one in five
  • Amount President Obama initiated spending in 2009 in an effort to expand access: $7 billion
  • Number of Americans potentially shut off from jobs, government services, health care and education, among other opportunities due to digital inequality: 60 million
  • American adults with a high-speed broadband connection at home as of May 2013: 7 out of 10
  • Americans aged 18-29 vs. 65+ with a high-speed broadband connection at home as of May 2013: 80% vs. 43
  • American adults with college education (or more) vs. adults with no high school diploma that have a high-speed broadband connection at home as of May 2013: 89% vs. 37%
  • Percent of U.S. adults with college education (or more) that use the internet in 2011: 94
  • Those with no high school diploma that used the internet in 2011: 43
  • Percent of white American households that used the internet in 2013: 67
  • Black American households that used the internet in 2013: 57
  • States with lowest internet use rates in 2013: Mississippi, Alabama and Arkansas
  • How many American households have only wireless telephones as of the second half of 2012: nearly two in five
  • States with the highest prevalence of wireless-only adults according to predictive modeling estimates: Idaho (52.3%), Mississippi (49.4%), Arkansas (49%)
  • Those with the lowest prevalence of wireless-only adults: New Jersey (19.4%), Connecticut (20.6%), Delaware (23.3%) and New York (23.5%)

Sources

The Emerging Power of Big Data


New America Foundation Report on the Chicago experience of using big data: “Big data is transforming the commercial marketplace but it also has the potential to reshape government affairs and urban development.  In a new report from the Emerging Leaders Program at the Chicago Council of Global Affairs, Lincoln S. Ellis, a founding member of the World Economic Roundtable, and other authors from the Emerging Leaders Program, explore how big data can be used by mega-cities to meet the challenges they face in an age of resource constraints to improve the lives of their residents.
Using Chicago as a case study, the report examines how the explosion of data availability enables cities to do more with less—to improve government services, fund much needed transportation, provide better education, and guarantee public safety.  And do more with less is what many cities have had to do over the past five years because many cities have had to cut their budgets and reduce the number of public employees in the post-financial crisis economy.  It is also what they will need to continue to do in the future.
“Unfortunately, resource constraints are a consistent feature of the post-crisis global landscape,” argues Ellis.  “Happily, so too is the renaissance in productivity gains garnered by our ability to leverage technology and information to achieve our most important public purposes in a smarter and more efficient way.”
Click here to view the report as a PDF.”

App pays commuters to take routes that ease congestion


Springwise: “Congestion at peak hours is a major problem in the world’s busiest city centres. We’ve recently seen Gothenburg in Sweden offering free bicycles to ease the burden on public transport services, but now a new app is looking to take a different approach to the same problem. Urban Engines uses algorithms to help cities determine key congestion choke points and times, and can then reward commuters for avoiding them.
The Urban Engines system is based on commuters using the smart commuter cards already found in many major cities. The company tracks journeys made with those commuter cards, and uses that data to identify main areas of congestion, and at what times the congestion occurs. The system has already been employed in Washington, D.C, and Sao Paulo, Brazil, helping provide valuable data for work with city planners.
It’s in Singapore, however, where the most interesting work has been achieved so far. There, commuters who have signed up and registered their commuter cards can earn rewards when they travel. They will earn one point for every kilometre travelled during peak hours, or triple that when travelling off-peak. The points earned can then be converted into discounts on future journeys, or put towards an in-app raffle game, where they have the opportunity to win sums of money. Urban Engines claim there’s been a 7 to 13 percent reduction in journeys made during peak hours, with 200,000 commuters taking part.
The company is based on an original experiment carried out in Bangalore. The rewards program there, carried out among 20,000 employees of the Indian company Infosys, lead to 17 percent of traffic shifting to off-peak travel times in six months. A similarly successful experiment has also been carried out on the Stanford University campus, and the plan is to now expand to other major cities…”

Crowdsourcing moving beyond the fringe


Bob Brown in Networked World: ” Depending up on how you look at it, crowdsourcing is all the rage these days — think Wikipedia, X Prize and Kickstarter — or at the other extreme, greatly underused.
To the team behind the new “insight network” Yegii, crowdsourcing has not nearly reached its potential despite having its roots as far back as the early 1700s and a famous case of the British Government seeking a solution to “The Longitude Problem” in order to make sailing less life threatening. (I get the impression that mention of this example is obligatory at any crowdsourcing event.)
This angel-funded startup, headed by an MIT Sloan School of Management senior lecturer and operating from a Boston suburb, is looking to exploit crowdsourcing’s potential through a service that connects financial, healthcare, technology and other organizations seeking knowledge with experts who can provide it – and fairly fast. To CEO Trond Undheim, crowdsourcing is “no longer for fringe freelance work,” and the goal is to get more organizations and smart individuals involved.
“Yegii is essentially a network of networks, connecting people, organizations, and knowledge in new ways,” says Undheim, who explains that the name Yegii is Korean for “talk” or “discussion”. “Our focus is laser sharp: we only rank and rate knowledge that says something essential about what I see as the four forces of industry disruption: technology, policy, user dynamics and business models.  We tackle challenging business issues across domains, from life sciences to energy to finance.  The point is that today’s industry classification is falling apart. We need more specific insight than in-house strategizing or generalist consulting advice.”
Undheim attempted to drum up interest in the new business last week at an event at Babson College during which a handful of crowdsourcing experts spoke. Harvard Business School adjunct professor Alan MacCormack discussed the X Prize, Netflix Prize and other examples of spurring competition through crowdsourcing. MIT’s Peter Gloor extolled the virtue of collaborative and smart swarms of people vs. stupid crowds (such as football hooligans). A couple of advertising/marketing execs shared stories of how clients and other brands are increasingly tapping into their customer base and the general public for new ideas from slogans to products, figuring that potential new customers are more likely to trust their peers than corporate ads. Another speaker dove into more details about how to run a crowdsourcing challenge, which includes identifying motivation that goes beyond money.
All of this was to frame Yegii’s crowdsourcing plan, which is at the beta stage with about a dozen clients (including Akamai and Santander bank) and is slated for mass production later this year. Yegii’s team consists of five part-timers, plus a few interns, who are building a web-based platform that consists of “knowledge assets,” that is market research, news reports and datasets from free and paid sources. That content – on topics that range from Bitcoin’s impact on banks to telecom bandwidth costs — is reviewed and ranked through a combination of machine learning and human peers. Information seekers would pay Yegii up to hundreds of dollars per month or up to tens of thousands of dollars per project, and then multidisciplinary teams would accept the challenge of answering their questions via customized reports within staged deadlines.
“We are focused on building partnerships with other expert networks and associations that have access to smart people with spare capacity, wherever they are,” Undheim says.
One reason organizations can benefit from crowdsourcing, Undheim says, is because of the “ephemeral nature of expertise in today’s society.” In other words, people within your organization might think of themselves as experts in this or that, but when they really think about it, they might realize their level of expertise has faded. Yegii will strive to narrow down the best sources of information for those looking to come up to speed on a subject over a weekend, whereas hunting for that information across a vast search engine would not be nearly as efficient….”

Lawsuit Would Force IRS to Release Nonprofit Tax Forms Digitally


Suzanne Perry at the Chronicle of Philanthropy on how “Open Data Could Shine a Light on Pay and Lobbying”: “Nonprofits that want to find out what their peers are doing can find a wealth of information in the forms the groups must file each year with the Internal Revenue Service—how much they pay their chief executives, how much they spend on fundraising, who is on their boards, where they offer services.
But the way the IRS makes those data available harkens to the digital dark ages, and critics who want to overhaul the system have been shaking up the generally polite nonprofit world with legal challenges, charges of monopoly, and talk of “disrupting” the status quo.
The issue will take center stage in a courtroom this week when a federal district judge in San Francisco is scheduled to consider arguments about whether to approve the IRS’s move to dismiss a lawsuit filed by an open-records group.
The group wants to obtain some specific Forms 990s, the informational tax documents filed by nonprofits, in a format that can be read by computers.
In theory, that shouldn’t be difficult since the nine nonprofits involved— including the American National Standards Institute, the New Horizons Foundation, and the International Code Council—submitted the forms electronically. But the IRS converts all 990s, no matter how they were filed, into images, rendering them useless for digital operations like searching multiple forms for information­.
That means watchdog groups and those that provide information on charities, like Charity Navigator, GuideStar, and the Urban Institute, have to spend money to manually enter the data they get from the IRS before making it available to the public, even if it has previously been digitized.
The lawsuit against the IRS, filed by Public.Resource.Org, aims to end that practice.
Carl Malamud, who heads the group, is a longtime activist who successfully pushed the Securities and Exchange Commission to post corporate filings free online in the 1990s, among other projects.
He wants to do the same with the IRS, arguing that data should be readily available at no cost about a sector that represents more than 1.5 million tax-exempt organizations and more than $1.5-trillion in revenue.

In Defense of Transit Apps


Mark Headd at Civic Innovations: “The civic technology community has a love-hate relationship with transit apps.
We love to, and often do, use the example of open transit data and the cottage industry of civic app development it has helped spawn as justification for governments releasing open data. Some of the earliest, most enduring and most successful civic applications have been built on transit data and there literally hundreds of different apps available.
The General Transit Feed Specification (GTFS), which has helped to encourage the release of transit data from dozens and dozens of transportation authorities across the country, is used as the model for the development of other open data standards. I once described work being done to develop a data standard for locations dispensing vaccinations as “GTFS for flu shots.”
bracken-tweet
But some in the civic technology community chafe at the overuse of transit apps as the example cited for the release of open data and engagement with outside civic hackers. Surely there are other examples we can point to that get at deeper, more fundamental problems with civic engagement and the operation of government. Is the best articulation of the benefits of open data and civic hacking a simple bus stop application?
Last week at Transparency Camp in DC, during a session I ran on open data, I was asked what data governments should focus on releasing as open data. I stated my belief that – at a minimum – governments should concentrate on The 3 B’s: Buses (transit data), Bullets (crime data) and Bucks (budget & expenditure data).
To be clear – transit data and the apps it helps generate are critical to the open data and civic technology movements. I think it is vital to exploring the role that transit apps have played in the development of the civic technology ecosystem and their impact on open data.

Story telling with transit data

Transit data supports more than just “next bus” apps. In fact, characterizing all transit apps this way does a disservice to the talented and creative people working to build things with transit data. Transit data supports a wide range of different visualizations that can tell an intimate, granular story about how a transit system works and how it’s operation impacts a city.
One inspiring example of this kind of app was developed recently by Mike Barry and Brian Card, and looked at the operation of MBTA in Boston. Their motive was simple:

We attempt to present this information to help people in Boston better understand the trains, how people use the trains, and how the people and trains interact with each other.

We’re able to tell nuanced stories about transit systems because the quality of data being released continues to expand and improve in quality. This happens because developers building apps in cities across the country have provided feedback to transit officials on what they want to see and the quality of what is provided.
Developers building the powerful visualizations we see today are standing on the shoulders of the people that built the “next bus” apps a few years ago. Without these humble apps, we don’t get to tell these powerful stories today.

Holding government accountable

Transit apps are about more than just getting to the train on time.
Support for transit system operations can run into the billions of dollars and affect the lives of millions of people in an urban area. With this much investment, it’s important that transit riders and taxpayers are able to hold officials accountable for the efficient operation of transit systems. To help us do this, we now have a new generation of transit apps that can examine things like the scheduled arrival and departure times of trains with their actual arrival and departure time.
Not only does this give citizens transparency into how well their transit system is being run, it offers a pathway for engagement – by knowing which routes are not performing close to scheduled times, transit riders and others can offer suggestions for changes and improvements.

A gateway to more open data

One of the most important things that transit apps can do is provide a pathway for more open data.
In Philadelphia, the city’s formal open data policy and the creation of an open data portal all followed after the efforts of a small group of developers working to obtain transit schedule data from the Southeastern Pennsylvania Transportation Authority (SEPTA). This group eventually built the region’s first transit app.
This small group pushed SEPTA to make their data open, and the Authority eventually embraced open data. This, in turn, raised the profile of open data with other city leaders and directly contributed to the adoption of an open data policy by the City of Philadelphia several years later. Without this simple transit app and the push for more open transit data, I don’t think this would have happened. Certainly not as soon as it did.
And it isn’t just big cities like Philadelphia. In Syracuse, NY – a small city with no tradition of civic hacking and no formal open data program – a group at a local hackathon decided that they wanted to build a platform for government open data.
The first data source they selected to focus on? Transit data. The first app they built? A transit app…”

Let's amplify California's collective intelligence


Gavin Newsom and Ken Goldberg at the SFGate: “Although the results of last week’s primary election are still being certified, we already know that voter turnout was among the lowest in California’s history. Pundits will rant about the “cynical electorate” and wag a finger at disengaged voters shirking their democratic duties, but we see the low turnout as a symptom of broader forces that affect how people and government interact.
The methods used to find out what citizens think and believe are limited to elections, opinion polls, surveys and focus groups. These methods may produce valuable information, but they are costly, infrequent and often conducted at the convenience of government or special interests.
We believe that new technology has the potential to increase public engagement by tapping the collective intelligence of Californians every day, not just on election day.
While most politicians already use e-mail and social media, these channels are easily dominated by extreme views and tend to regurgitate material from mass media outlets.
We’re exploring an alternative.
The California Report Card is a mobile-friendly web-based platform that streamlines and organizes public input for the benefit of policymakers and elected officials. The report card allows participants to assign letter grades to key issues and to suggest new ideas for consideration; public officials then can use that information to inform their decisions.
In an experimental version of the report card released earlier this year, residents from all 58 counties assigned more than 20,000 grades to the state of California and also suggested issues they feel deserve priority at the state level. As one participant noted: “This platform allows us to have our voices heard. The ability to review and grade what others suggest is important. It enables elected officials to hear directly how Californians feel.”
Initial data confirm that Californians approve of our state’s rollout of Obamacare, but are very concerned about the future of our schools and universities.
There was also a surprise. California Report Card suggestions for top state priorities revealed consistently strong interest and support for more attention to disaster preparedness. Issues related to this topic were graded as highly important by a broad cross section of participants across the state. In response, we’re testing new versions of the report card that can focus on topics related to wildfires and earthquakes.
The report card is part of an ongoing collaboration between the CITRIS Data and Democracy Initiative at UC Berkeley and the Office of the Lieutenant Governor to explore how technology can improve public communication and bring the government closer to the people. Our hunch is that engineering concepts can be adapted for public policy to rapidly identify real insights from constituents and resist gaming by special interests.
You don’t have to wait for the next election to have your voice heard by officials in Sacramento. The California Report Card is now accessible from cell phones, desktop and tablet computers. We encourage you to contribute your own ideas to amplify California’s collective intelligence. It’s easy, just click “participate” on this website: CaliforniaReportCard.org”

Crowdsourcing and social search


at Techcrunch: “When we think of the sharing economy, what often comes to mind are sites like Airbnb, Lyft, or Feastly — the platforms that allow us to meet people for a specific reason, whether that’s a place to stay, a ride, or a meal.
But what about sharing something much simpler than that, like answers to our questions about the world around us? Sharing knowledge with strangers can offer us insight into a place we are curious about or trying to navigate, and in a more personal, efficient way than using traditional web searches.
“Sharing an answer or response to question, that is true sharing. There’s no financial or monetary exchange based on that. It’s the true meaning of [the word],” said Maxime Leroy, co-founder and CEO of a new app called Enquire.
Enquire is a new question-and-answer app, but it is unlike others in the space. You don’t have to log in via Facebook or Twitter, use SMS messaging like on Quest, or upload an image like you do on Jelly. None of these apps have taken off yet, which could be good or bad for Enquire just entering the space.
With Enquire, simply log in with a username and password and it will unlock the neighborhood you are in (the app only works in San Francisco, New York, and Paris right now). There are lists of answers to other questions, or you can post your own. If 200 people in a city sign up, the app will become available to them, which is an effort to make sure there is a strong community to gather answers from.
Leroy, who recently made a documentary about the sharing economy, realized there was “one tool missing for local communities” in the space, and decided to create this app.
“We want to build a more local-based network, and empower and increase trust without having people share all their identity,” he said.
Different social channels look at search in different ways, but the trend is definitely moving to more social searching or location-based searching, according to according to Altimeter social media analyst Rebecca Lieb. Arguably, she said, Yelp, Groupon, and even Google Maps are vertical search engines. If you want to find a nearby restaurant, pharmacy, or deal, you look to these platforms.
However, she credits Aardvark as one of the first in the space, which was a social search engine founded in 2007 that used instant messaging and email to get answers from your existing contacts. Google bought the company in 2010. It shows the idea of crowdsourcing answers isn’t new, but the engines have become “appified,” she said.
“Now it’s geo-local specific,” she said. “We’re asking a lot more of those geo-local questions because of location-based immediacy [that we want].”
Think Seamless, with which you find the food nearby that most satisfies your appetite. Even Tinder and Grindr are social search engines, Lieb said. You want to meet up with the people that are closest to you, geographically….
His challenge is to offer rewards to incite people to sign up for the app. Eventually, Leroy would like to strengthen the networks and scale Enquire to cities and neighborhoods all over the world. Once that’s in place, people can start creating their own neighborhoods — around a school or workplace, where they hang out regularly — instead of using the existing constraints.
“I may be an expert in one area, and a newbie in another. I want to emphasize the activity and content from users to give them credit to other users and build that trust,” he said.
Usually, our first instinct is to open Yelp to find the best sushi restaurant or Google to search the closest concert venue, and it will probably stay that way for some time. But the idea that the opinions and insights of other human beings, even of strangers, is becoming much more valuable because of the internet is not far-fetched.
Admit it: haven’t you had a fleeting thought of starting a Kickstarter campaign for an idea? Looked for a cheaper place to stay on Airbnb than that hotel you normally book in New York? Or considered financing someone’s business idea across the world using Kiva? If so, then you’ve engaged in social search.
Suddenly, crowdsourcing answers for the things that pique your interest on your morning walk may not seem so strange after all.”

Selected Readings on Crowdsourcing Tasks and Peer Production


The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of crowdsourcing was originally published in 2014.

Technological advances are creating a new paradigm by which institutions and organizations are increasingly outsourcing tasks to an open community, allocating specific needs to a flexible, willing and dispersed workforce. “Microtasking” platforms like Amazon’s Mechanical Turk are a burgeoning source of income for individuals who contribute their time, skills and knowledge on a per-task basis. In parallel, citizen science projects – task-based initiatives in which citizens of any background can help contribute to scientific research – like Galaxy Zoo are demonstrating the ability of lay and expert citizens alike to make small, useful contributions to aid large, complex undertakings. As governing institutions seek to do more with less, looking to the success of citizen science and microtasking initiatives could provide a blueprint for engaging citizens to help accomplish difficult, time-consuming objectives at little cost. Moreover, the incredible success of peer-production projects – best exemplified by Wikipedia – instills optimism regarding the public’s willingness and ability to complete relatively small tasks that feed into a greater whole and benefit the public good. You can learn more about this new wave of “collective intelligence” by following the MIT Center for Collective Intelligence and their annual Collective Intelligence Conference.

Selected Reading List (in alphabetical order)

Annotated Selected Reading List (in alphabetical order)

Benkler, Yochai. The Wealth of Networks: How Social Production Transforms Markets and Freedom. Yale University Press, 2006. http://bit.ly/1aaU7Yb.

  • In this book, Benkler “describes how patterns of information, knowledge, and cultural production are changing – and shows that the way information and knowledge are made available can either limit or enlarge the ways people can create and express themselves.”
  • In his discussion on Wikipedia – one of many paradigmatic examples of people collaborating without financial reward – he calls attention to the notable ongoing cooperation taking place among a diversity of individuals. He argues that, “The important point is that Wikipedia requires not only mechanical cooperation among people, but a commitment to a particular style of writing and describing concepts that is far from intuitive or natural to people. It requires self-discipline. It enforces the behavior it requires primarily through appeal to the common enterprise that the participants are engaged in…”

Brabham, Daren C. Using Crowdsourcing in Government. Collaborating Across Boundaries Series. IBM Center for The Business of Government, 2013. http://bit.ly/17gzBTA.

  • In this report, Brabham categorizes government crowdsourcing cases into a “four-part, problem-based typology, encouraging government leaders and public administrators to consider these open problem-solving techniques as a way to engage the public and tackle difficult policy and administrative tasks more effectively and efficiently using online communities.”
  • The proposed four-part typology describes the following types of crowdsourcing in government:
    • Knowledge Discovery and Management
    • Distributed Human Intelligence Tasking
    • Broadcast Search
    • Peer-Vetted Creative Production
  • In his discussion on Distributed Human Intelligence Tasking, Brabham argues that Amazon’s Mechanical Turk and other microtasking platforms could be useful in a number of governance scenarios, including:
    • Governments and scholars transcribing historical document scans
    • Public health departments translating health campaign materials into foreign languages to benefit constituents who do not speak the native language
    • Governments translating tax documents, school enrollment and immunization brochures, and other important materials into minority languages
    • Helping governments predict citizens’ behavior, “such as for predicting their use of public transit or other services or for predicting behaviors that could inform public health practitioners and environmental policy makers”

Boudreau, Kevin J., Patrick Gaule, Karim Lakhani, Christoph Reidl, Anita Williams Woolley. “From Crowds to Collaborators: Initiating Effort & Catalyzing Interactions Among Online Creative Workers.” Harvard Business School Technology & Operations Mgt. Unit Working Paper No. 14-060. January 23, 2014. https://bit.ly/2QVmGUu.

  • In this working paper, the authors explore the “conditions necessary for eliciting effort from those affecting the quality of interdependent teamwork” and “consider the the role of incentives versus social processes in catalyzing collaboration.”
  • The paper’s findings are based on an experiment involving 260 individuals randomly assigned to 52 teams working toward solutions to a complex problem.
  • The authors determined the level of effort in such collaborative undertakings are sensitive to cash incentives. However, collaboration among teams was driven more by the active participation of teammates, rather than any monetary reward.

Franzoni, Chiara, and Henry Sauermann. “Crowd Science: The Organization of Scientific Research in Open Collaborative Projects.” Research Policy (August 14, 2013). http://bit.ly/HihFyj.

  • In this paper, the authors explore the concept of crowd science, which they define based on two important features: “participation in a project is open to a wide base of potential contributors, and intermediate inputs such as data or problem solving algorithms are made openly available.” The rationale for their study and conceptual framework is the “growing attention from the scientific community, but also policy makers, funding agencies and managers who seek to evaluate its potential benefits and challenges. Based on the experiences of early crowd science projects, the opportunities are considerable.”
  • Based on the study of a number of crowd science projects – including governance-related initiatives like Patients Like Me – the authors identify a number of potential benefits in the following categories:
    • Knowledge-related benefits
    • Benefits from open participation
    • Benefits from the open disclosure of intermediate inputs
    • Motivational benefits
  • The authors also identify a number of challenges:
    • Organizational challenges
    • Matching projects and people
    • Division of labor and integration of contributions
    • Project leadership
    • Motivational challenges
    • Sustaining contributor involvement
    • Supporting a broader set of motivations
    • Reconciling conflicting motivations

Kittur, Aniket, Ed H. Chi, and Bongwon Suh. “Crowdsourcing User Studies with Mechanical Turk.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 453–456. CHI ’08. New York, NY, USA: ACM, 2008. http://bit.ly/1a3Op48.

  • In this paper, the authors examine “[m]icro-task markets, such as Amazon’s Mechanical Turk, [which] offer a potential paradigm for engaging a large number of users for low time and monetary costs. [They] investigate the utility of a micro-task market for collecting user measurements, and discuss design considerations for developing remote micro user evaluation tasks.”
  • The authors conclude that in addition to providing a means for crowdsourcing small, clearly defined, often non-skill-intensive tasks, “Micro-task markets such as Amazon’s Mechanical Turk are promising platforms for conducting a variety of user study tasks, ranging from surveys to rapid prototyping to quantitative measures. Hundreds of users can be recruited for highly interactive tasks for marginal costs within a timeframe of days or even minutes. However, special care must be taken in the design of the task, especially for user measurements that are subjective or qualitative.”

Kittur, Aniket, Jeffrey V. Nickerson, Michael S. Bernstein, Elizabeth M. Gerber, Aaron Shaw, John Zimmerman, Matthew Lease, and John J. Horton. “The Future of Crowd Work.” In 16th ACM Conference on Computer Supported Cooperative Work (CSCW 2013), 2012. http://bit.ly/1c1GJD3.

  • In this paper, the authors discuss paid crowd work, which “offers remarkable opportunities for improving productivity, social mobility, and the global economy by engaging a geographically distributed workforce to complete complex tasks on demand and at scale.” However, they caution that, “it is also possible that crowd work will fail to achieve its potential, focusing on assembly-line piecework.”
  • The authors argue that seven key challenges must be met to ensure that crowd work processes evolve and reach their full potential:
    • Designing workflows
    • Assigning tasks
    • Supporting hierarchical structure
    • Enabling real-time crowd work
    • Supporting synchronous collaboration
    • Controlling quality

Madison, Michael J. “Commons at the Intersection of Peer Production, Citizen Science, and Big Data: Galaxy Zoo.” In Convening Cultural Commons, 2013. http://bit.ly/1ih9Xzm.

  • This paper explores a “case of commons governance grounded in research in modern astronomy. The case, Galaxy Zoo, is a leading example of at least three different contemporary phenomena. In the first place, Galaxy Zoo is a global citizen science project, in which volunteer non-scientists have been recruited to participate in large-scale data analysis on the Internet. In the second place, Galaxy Zoo is a highly successful example of peer production, some times known as crowdsourcing…In the third place, is a highly visible example of data-intensive science, sometimes referred to as e-science or Big Data science, by which scientific researchers develop methods to grapple with the massive volumes of digital data now available to them via modern sensing and imaging technologies.”
  • Madison concludes that the success of Galaxy Zoo has not been the result of the “character of its information resources (scientific data) and rules regarding their usage,” but rather, the fact that the “community was guided from the outset by a vision of a specific organizational solution to a specific research problem in astronomy, initiated and governed, over time, by professional astronomers in collaboration with their expanding universe of volunteers.”

Malone, Thomas W., Robert Laubacher and Chrysanthos Dellarocas. “Harnessing Crowds: Mapping the Genome of Collective Intelligence.” MIT Sloan Research Paper. February 3, 2009. https://bit.ly/2SPjxTP.

  • In this article, the authors describe and map the phenomenon of collective intelligence – also referred to as “radical decentralization, crowd-sourcing, wisdom of crowds, peer production, and wikinomics – which they broadly define as “groups of individuals doing things collectively that seem intelligent.”
  • The article is derived from the authors’ work at MIT’s Center for Collective Intelligence, where they gathered nearly 250 examples of Web-enabled collective intelligence. To map the building blocks or “genes” of collective intelligence, the authors used two pairs of related questions:
    • Who is performing the task? Why are they doing it?
    • What is being accomplished? How is it being done?
  • The authors concede that much work remains to be done “to identify all the different genes for collective intelligence, the conditions under which these genes are useful, and the constraints governing how they can be combined,” but they believe that their framework provides a useful start and gives managers and other institutional decisionmakers looking to take advantage of collective intelligence activities the ability to “systematically consider many possible combinations of answers to questions about Who, Why, What, and How.”

Mulgan, Geoff. “True Collective Intelligence? A Sketch of a Possible New Field.” Philosophy & Technology 27, no. 1. March 2014. http://bit.ly/1p3YSdd.

  • In this paper, Mulgan explores the concept of a collective intelligence, a “much talked about but…very underdeveloped” field.
  • With a particular focus on health knowledge, Mulgan “sets out some of the potential theoretical building blocks, suggests an experimental and research agenda, shows how it could be analysed within an organisation or business sector and points to possible intellectual barriers to progress.”
  • He concludes that the “central message that comes from observing real intelligence is that intelligence has to be for something,” and that “turning this simple insight – the stuff of so many science fiction stories – into new theories, new technologies and new applications looks set to be one of the most exciting prospects of the next few years and may help give shape to a new discipline that helps us to be collectively intelligent about our own collective intelligence.”

Sauermann, Henry and Chiara Franzoni. “Participation Dynamics in Crowd-Based Knowledge Production: The Scope and Sustainability of Interest-Based Motivation.” SSRN Working Papers Series. November 28, 2013. http://bit.ly/1o6YB7f.

  • In this paper, Sauremann and Franzoni explore the issue of interest-based motivation in crowd-based knowledge production – in particular the use of the crowd science platform Zooniverse – by drawing on “research in psychology to discuss important static and dynamic features of interest and deriv[ing] a number of research questions.”
  • The authors find that interest-based motivation is often tied to a “particular object (e.g., task, project, topic)” not based on a “general trait of the person or a general characteristic of the object.” As such, they find that “most members of the installed base of users on the platform do not sign up for multiple projects, and most of those who try out a project do not return.”
  • They conclude that “interest can be a powerful motivator of individuals’ contributions to crowd-based knowledge production…However, both the scope and sustainability of this interest appear to be rather limited for the large majority of contributors…At the same time, some individuals show a strong and more enduring interest to participate both within and across projects, and these contributors are ultimately responsible for much of what crowd science projects are able to accomplish.”

Schmitt-Sands, Catherine E. and Richard J. Smith. “Prospects for Online Crowdsourcing of Social Science Research Tasks: A Case Study Using Amazon Mechanical Turk.” SSRN Working Papers Series. January 9, 2014. http://bit.ly/1ugaYja.

  • In this paper, the authors describe an experiment involving the nascent use of Amazon’s Mechanical Turk as a social science research tool. “While researchers have used crowdsourcing to find research subjects or classify texts, [they] used Mechanical Turk to conduct a policy scan of local government websites.”
  • Schmitt-Sands and Smith found that “crowdsourcing worked well for conducting an online policy program and scan.” The microtasked workers were helpful in screening out local governments that either did not have websites or did not have the types of policies and services for which the researchers were looking. However, “if the task is complicated such that it requires ongoing supervision, then crowdsourcing is not the best solution.”

Shirky, Clay. Here Comes Everybody: The Power of Organizing Without Organizations. New York: Penguin Press, 2008. https://bit.ly/2QysNif.

  • In this book, Shirky explores our current era in which, “For the first time in history, the tools for cooperating on a global scale are not solely in the hands of governments or institutions. The spread of the Internet and mobile phones are changing how people come together and get things done.”
  • Discussing Wikipedia’s “spontaneous division of labor,” Shirky argues that the process is like, “the process is more like creating a coral reef, the sum of millions of individual actions, than creating a car. And the key to creating those individual actions is to hand as much freedom as possible to the average user.”

Silvertown, Jonathan. “A New Dawn for Citizen Science.” Trends in Ecology & Evolution 24, no. 9 (September 2009): 467–471. http://bit.ly/1iha6CR.

  • This article discusses the move from “Science for the people,” a slogan adopted by activists in the 1970s to “’Science by the people,’ which is “a more inclusive aim, and is becoming a distinctly 21st century phenomenon.”
  • Silvertown identifies three factors that are responsible for the explosion of activity in citizen science, each of which could be similarly related to the crowdsourcing of skills by governing institutions:
    • “First is the existence of easily available technical tools for disseminating information about products and gathering data from the public.
    • A second factor driving the growth of citizen science is the increasing realisation among professional scientists that the public represent a free source of labour, skills, computational power and even finance.
    • Third, citizen science is likely to benefit from the condition that research funders such as the National Science Foundation in the USA and the Natural Environment Research Council in the UK now impose upon every grantholder to undertake project-related science outreach. This is outreach as a form of public accountability.”

Szkuta, Katarzyna, Roberto Pizzicannella, David Osimo. “Collaborative approaches to public sector innovation: A scoping study.” Telecommunications Policy. 2014. http://bit.ly/1oBg9GY.

  • In this article, the authors explore cases where government collaboratively delivers online public services, with a focus on success factors and “incentives for services providers, citizens as users and public administration.”
  • The authors focus on six types of collaborative governance projects:
    • Services initiated by government built on government data;
    • Services initiated by government and making use of citizens’ data;
    • Services initiated by civil society built on open government data;
    • Collaborative e-government services; and
    • Services run by civil society and based on citizen data.
  • The cases explored “are all designed in the way that effectively harnesses the citizens’ potential. Services susceptible to collaboration are those that require computing efforts, i.e. many non-complicated tasks (e.g. citizen science projects – Zooniverse) or citizens’ free time in general (e.g. time banks). Those services also profit from unique citizens’ skills and their propensity to share their competencies.”

Cluster mapping


“The U.S. Cluster Mapping Project is a national economic initiative that provides open, interactive data to understand regional clusters and support business, innovation and policy in the United States. It is based at the Institute for Strategy and Competitiveness at Harvard Business School, with support from a number of partners and a federal grant from the U.S. Department of Commerce’s Economic Development Administration.
Research
The project provides a robust cluster mapping database grounded in the leading academic research. Professor Michael Porter pioneered the comprehensive mapping of clusters in the U.S. economy in the early 2000s. The research team from Harvard, MIT, and Temple used the latest Census and industry data to develop a new algorithm to define cluster categories that cover the entire U.S. economy. These categories enable comparative analyses of clusters across any region in the United States….
Impact
Research on the presence of regional clusters has recently oriented economic policy toward addressing the needs of clusters and mobilizing their potential. Four regional partners in Massachusetts, Minnesota, Oregon, and South Carolina produced a set of case studies that discuss how regions have organized economic policy around clusters. These cases form the core of a resource library that aims to disseminate insights and strengthen the community of practice in cluster-based economic development. The project will also take an international scope to benefit cross-border industries in North America and inform collective global dialogue around cluster-based economic development.”