AI and Assembly: Coming Together and Apart in a Datafied World


Book edited by Toussaint Nothias and Lucy Bernholz: “Artificial intelligence has moved from the lab into everyday life and is now seemingly everywhere. As AI creeps into every aspect of our lives, the data grab required to power AI also expands. People worldwide are tracked, analyzed, and influenced, whether on or off their screens, inside their homes or outside in public, still or in transit, alone or together. What does this mean for our ability to assemble with others for collective action, including protesting, holding community meetings and organizing rallies ? In this context, where and how does assembly take place, and who participates by choice and who by coercion? AI and Assembly explores these questions and offers global perspectives on the present and future of assembly in a world taken over by AI.

The contributors analyze how AI threatens free assembly by clustering people without consent, amplifying social biases, and empowering authoritarian surveillance. But they also explore new forms of associational life that emerge in response to these harms, from communities in the US conducting algorithmic audits to human rights activists in East Africa calling for biometric data protection and rideshare drivers in London advocating for fair pay. Ultimately, AI and Assembly is a rallying cry for those committed to a digital future beyond the narrow horizon of corporate extraction and state surveillance…(More)”.

AGI vs. AAI: Grassroots Ingenuity and Frugal Innovation Will Shape the Future


Article by Akash Kapur: “Step back from the day-to-day flurry surrounding AI, and a global divergence in narratives is becoming increasingly clear. In Silicon Valley, New York, and London, the conversation centers on the long-range pursuit of artificial general intelligence (AGI)—systems that might one day equal or surpass humans at almost everything. This is the moon-shot paradigm, fueled by multi-billion-dollar capital expenditure and almost metaphysical ambition.

In contrast, much of the Global South is converging on something more grounded: the search for near-term, proven use cases that can be deployed with today’s hardware, and limited budgets and bandwidth. Call it Applied AI, or AAI. This quest for applicability—and relevance—is more humble than AGI. Its yardstick for success is more measured, and certainly less existential. Rather than pose profound questions about the nature of consciousness and humanity, Applied AI asks questions like: Does the model fix a real-world problem? Can it run on patchy 4G, a mid-range GPU, or a refurbished phone? What new yield can it bring to farmers or fishermen, or which bureaucratic bottleneck can it cut?

One way to think of AAI is as intelligence that ships. Vernacular chatbots, offline crop-disease detectors, speech-to-text tools for courtrooms: examples of similar applications and products, tailored and designed for specific sectors, are growing fast. In Africa, PlantVillage Nuru helps Kenyan farmers diagnose crop diseases entirely offline; South-Africa-based Lelapa AI is training “small language models” for at least 13 African languages; and Nigeria’s EqualyzAI runs chatbots that are trained to provide Hausa and Yoruba translations for customers…(More)”.

National engagement on public trust in data use for single patient record and GP health record published


HTN Article: “A large-scale public engagement report commissioned by NHSE on building and maintaining public trust in data use across health and care has been published, focusing on the approach to creating a single patient record and the secondary use of GP data.

It noted “relief” and “enthusiasm” from participants around not having to repeat their health history when interacting with different parts of the health and care system, and highlighted concerns about data accuracy, privacy, and security.

120 participants were recruited for tier one, with 98 remaining by the end, for 15 hours of deliberation over three days in locations including Liverpool, Leicester, Portsmouth, and South London. Inclusive engagement for tier two recruited 76 people from “seldom heard groups” such as those with health needs or socially marginalised groups for interviews and small group sessions. A nationally representative ten-minute online survey with 2,000 people was also carried out in tier three.

“To start with, the concept of a single patient record was met with relief and enthusiasm across Tier 1 and Tier 2 participants,” according to the report….

When it comes to GP data, participants were “largely unaware” of secondary uses, but initially expressed comfort in the idea of it being used for saving lives, improving care, prevention, and efficiency in delivery of services. Concerns were broadly similar to those about the single patient record: concerns about data breaches, incorrect data, misuse, sensitivity of data being shared, bias against individuals, and the potential for re-identification. Some participants felt GP data should be treated differently because “it is likely to contain more intimate information”, offering greater risk to the individual patient if data were to be misused. Others felt it should be included alongside secondary care data to ensure a “comprehensive dataset”.

Participants were “reassured” overall by safeguards in place such as de-identification, staff training in data handling and security, and data regulation such as GDPR and the Data Protection Act. “There was a widespread feeling among Tier 1 and Tier 2 participants that the current model of the GP being the data controller for both direct care and secondary uses placed too much of a burden on GPs when it came to how data is used for secondary purposes,” findings show. “They wanted to see a new model which would allow for greater consistency of approach, transparency, and accountability.” Tier one participants suggested this could be a move to national or regional decision-making on secondary use. Tier three participants who only engaged with the topic online were “more resistant” to moving away from GPs as sole data controllers, with the report stating: “This greater reluctance to change demonstrates the need for careful communication with the public about this topic as changes are made, and continued involvement of the public.”..(More)”.

Spaces for democracy with generative artificial intelligence: public architecture at stake


Paper by Ingrid Campo-Ruiz: “Urban space is an important infrastructure for democracy and fosters democratic engagement, such as meetings, discussions, and protests. Artificial Intelligence (AI) systems could affect democracy through urban space, for example, by breaching data privacy, hindering political equality and engagement, or manipulating information about places. This research explores the urban places that promote democratic engagement according to the outputs generated with ChatGPT-4o. This research moves beyond the dominant framework of discussions on AI and democracy as a form of spreading misinformation and fake news. Instead, it provides an innovative framework, combining architectural space as an infrastructure for democracy and the way in which generative AI tools provide a nuanced view of democracy that could potentially influence millions of people. This article presents a new conceptual framework for understanding AI for democracy from the perspective of architecture. For the first case study in Stockholm, Sweden, AI outputs were later combined with GIS maps and a theoretical framework. The research then analyzes the results obtained for Madrid, Spain, and Brussels, Belgium. This analysis provides deeper insights into the outputs obtained with AI, the places that facilitate democratic engagement and those that are overlooked, and the ensuing consequences.Results show that urban space for democratic engagement obtained with ChatGPT-4o for Stockholm is mainly composed of governmental institutions and non-governmental organizations for representative or deliberative democracy and the education of individuals in public buildings in the city centre. The results obtained with ChatGPT-40 barely reflect public open spaces, parks, or routes. They also prioritize organized rather than spontaneous engagement and do not reflect unstructured events like demonstrations, and powerful actors, such as political parties, or workers’ unions. The places listed by ChatGPT-4o for Madrid and Brussels give major prominence to private spaces like offices that house organizations with political activities. While cities offer a broad and complex array of places for democratic engagement, outputs obtained with AI can narrow users’ perspectives on their real opportunities, while perpetuating powerful agents by not making them sufficiently visible to be accountable for their actions. In conclusion, urban space is a fundamental infrastructure for democracy, and AI outputs could be a valid starting point for understanding the plethora of interactions. These outputs should be complemented with other forms of knowledge to produce a more comprehensive framework that adjusts to reality for developing AI in a democratic context. Urban space should be protected as a shared space and as an asset for societies to fully develop democracy in its multiple forms. Democracy and urban spaces influence each other and are subject to pressures from different actors including AI. AI systems should, therefore, be monitored to enhance democratic values through urban space…(More)”.

Using Gamification to Engage Citizens in Micro-Mobility Data Sharing


Paper by Anu Masso, Anniki Puura, Jevgenia Gerassimenko and Olle Järv: “The European Strategy for Data aims to create a unified environment for accessing, sharing, and reusing data across sectors, institutions, and individuals, with a focus on areas like mobility and smart cities. While significant progress has been made in the technical interoperability and legislative frameworks for data spaces, critical gaps persist in the bottom-up processes, particularly in fostering social collaboration and citizen-driven initiatives. What is often overlooked is the need for effective citizen engagement and collaborative governance models to ensure the long-term viability and inclusivity of these data spaces. In addition, although principles for successful data sharing are well-established in sectors like healthcare, they remain underdeveloped and more challenging to implement in areas such as mobility. This article addresses these gaps by exploring how gamification can drive bottom-up data space formation, engaging citizens in data-sharing and fostering collaboration among private companies, local governments, and academic institutions. Using bicycle usage as an example, it illustrates how gamification can incentivise citizens to share mobility data for social good, promoting more active and sustainable transportation in cities. Drawing on a case study from Tallinn (Estonia), the paper demonstrates how gamification can improve data collection, highlighting the vital role of citizen participation in urban planning. The article emphasises that while technological solutions for data spaces are advancing, understanding collaborative governance models for data sharing remains crucial for ensuring the success of the European Union’s data space agenda and driving sustainable innovation in urban environments…(More)”.

How Media Ownership Matters


Book by Rodney Benson, Mattias Hessérus, Timothy Neff, and Julie Sedel: “Does it matter who owns and funds the media? As journalists and management consultants set off in search of new business models, there’s a pressing need to understand anew the economic underpinnings of journalism and its role in democratic societies.

How Media Ownership Matters provides a fresh approach to understanding news media power, moving beyond the typical emphasis on market concentration or media moguls. Through a comparative analysis of the US, Sweden, and France, as well as interviews of news executives and editors and an original collection of industry data, this book maps and analyzes four ownership models: market, private, civil society, and public. Highlighting the effects of organizational logics, funding, and target audiences on the content of news, the authors identify both the strengths and weaknesses various forms of ownership have in facilitating journalism that meets the democratic ideals of reasoned, critical, and inclusive public debate. Ultimately, How Media Ownership Matters provides a roadmap to understanding how variable forms of ownership are shaping the future of journalism and democracy…(More)”.

How we think about protecting data


Article by Peter Dizikes: “How should personal data be protected? What are the best uses of it? In our networked world, questions about data privacy are ubiquitous and matter for companies, policymakers, and the public.

A new study by MIT researchers adds depth to the subject by suggesting that people’s views about privacy are not firmly fixed and can shift significantly, based on different circumstances and different uses of data.

“There is no absolute value in privacy,” says Fabio Duarte, principal research scientist in MIT’s Senseable City Lab and co-author of a new paper outlining the results. “Depending on the application, people might feel use of their data is more or less invasive.”

The study is based on an experiment the researchers conducted in multiple countries using a newly developed game that elicits public valuations of data privacy relating to different topics and domains of life.

“We show that values attributed to data are combinatorial, situational, transactional, and contextual,” the researchers write.

The open-access paper, “Data Slots: tradeoffs between privacy concerns and benefits of data-driven solutions,” is published today in Nature: Humanities and Social Sciences Communications. The authors are Martina Mazzarello, a postdoc in the Senseable City Lab; Duarte; Simone Mora, a research scientist at Senseable City Lab; Cate Heine PhD ’24 of University College London; and Carlo Ratti, director of the Senseable City Lab.

The study is based around a card game with poker-type chips the researchers created to study the issue, called Data Slots. In it, players hold hands of cards with 12 types of data — such as a personal profile, health data, vehicle location information, and more — that relate to three types of domains where data are collected: home life, work, and public spaces. After exchanging cards, the players generate ideas for data uses, then assess and invest in some of those concepts. The game has been played in-person in 18 different countries, with people from another 74 countries playing it online; over 2,000 individual player-rounds were included in the study…(More)”.

Technical Tiers: A New Classification Framework for Global AI Workforce Analysis


Report by Siddhi Pal, Catherine Schneider and Ruggero Marino Lazzaroni: “… introduces a novel three-tiered classification system for global AI talent that addresses significant methodological limitations in existing workforce analyses, by distinguishing between different skill categories within the existing AI talent pool. By distinguishing between non-technical roles (Category 0), technical software development (Category 1), and advanced deep learning specialization (Category 2), our framework enables precise examination of AI workforce dynamics at a pivotal moment in global AI policy.

Through our analysis of a sample of 1.6 million individuals in the AI talent pool across 31 countries, we’ve uncovered clear patterns in technical talent distribution that significantly impact Europe’s AI ambitions. Asian nations hold an advantage in specialized AI expertise, with South Korea (27%), Israel (23%), and Japan (20%) maintaining the highest proportions of Category 2 talent. Within Europe, Poland and Germany stand out as leaders in specialized AI talent. This may be connected to their initiatives to attract tech companies and investments in elite research institutions, though further research is needed to confirm these relationships.

Our data also reveals a shifting landscape of global talent flows. Research shows that countries employing points-based immigration systems attract 1.5 times more high-skilled migrants than those using demand-led approaches. This finding takes on new significance in light of recent geopolitical developments affecting scientific research globally. As restrictive policies and funding cuts create uncertainty for researchers in the United States, one of the big destinations for European AI talent, the way nations position their regulatory environments, scientific freedoms, and research infrastructure will increasingly determine their ability to attract and retain specialized AI talent.

The gender analysis in our study illuminates another dimension of competitive advantage. Contrary to the overall AI talent pool, EU countries lead in female representation in highly technical roles (Category 2), occupying seven of the top ten global rankings. Finland, Czechia, and Italy have the highest proportion of female representation in Category 2 roles globally (39%, 31%, and 28%, respectively). This gender diversity represents not merely a social achievement but a potential strategic asset in AI innovation, particularly as global coalitions increasingly emphasize the importance of diverse perspectives in AI development…(More)”

Why more AI researchers should collaborate with governments


Article by Mohamed Ibrahim: “Artificial intelligence (AI) is beginning to transform many industries, yet its use to improve public services remains limited globally. AI-based tools could streamline access to government benefits through online chatbots or automate systems by which citizens report problems such as potholes.

Currently, scholarly advances in AI are mostly confined to academic papers and conferences, rarely translating into actionable government policies or products. This means that the expertise at universities is not used to solve real-world problems. As a No10 Innovation Fellow with the UK government and a lecturer in spatial data science, I have explored the potential of AI-driven rapid prototyping in public policy.

Take Street.AI, a prototype smartphone app that I developed, which lets citizens report issues including potholes, street violence or illegal litter dumping by simply taking a picture through the app. The AI model classifies the problem automatically and alerts the relevant local authority, passing on the location and details of the issue. A key feature of the app is its on-device processing, which ensures privacy and reduces operational costs. Similar tools were tested as an early-warning system during the riots that swept the United Kingdom in July and August 2024.

AI models can also aid complex decision-making — for instance, that involved in determining where to build houses. The UK government plans to construct 1.5 million homes in the next 5 years, but planning laws require that several parameters be considered — such as proximity to schools, noise levels, the neighbourhoods’ built-up ratio and flood risk. The current strategy is to compile voluminous academic reports on viable locations, but an online dashboard powered by AI that can optimize across parameters would be much more useful to policymakers…(More)”.

Europe’s GDPR privacy law is headed for red tape bonfire within ‘weeks’


Article by Ellen O’Regan: “Europe’s most famous technology law, the GDPR, is next on the hit list as the European Union pushes ahead with its regulatory killing spree to slash laws it reckons are weighing down its businesses.

The European Commission plans to present a proposal to cut back the General Data Protection Regulation, or GDPR for short, in the next couple of weeks. Slashing regulation is a key focus for Commission President Ursula von der Leyen, as part of an attempt to make businesses in Europe more competitive with rivals in the United States, China and elsewhere. 

The EU’s executive arm has already unveiled packages to simplify rules around sustainability reporting and accessing EU investment. The aim is for companies to waste less time and money on complying with complex legal and regulatory requirements imposed by EU laws…Seven years later, Brussels is taking out the scissors to give its (in)famous privacy law a trim.

There are “a lot of good things about GDPR, [and] privacy is completely necessary. But we don’t need to regulate in a stupid way. We need to make it easy for businesses and for companies to comply,” Danish Digital Minister Caroline Stage Olsen told reporters last week. Denmark will chair the work in the EU Council in the second half of 2025 as part of its rotating presidency.

The criticism of the GDPR echoes the views of former Italian Prime Minister Mario Draghi, who released a landmark economic report last September warning that Europe’s complex laws were preventing its economy from catching up with the United States and China. “The EU’s regulatory stance towards tech companies hampers innovation,” Draghi wrote, singling out the Artificial Intelligence Act and the GDPR…(More)”.