The Stanford Open Policing Project


About: “On a typical day in the United States, police officers make more than 50,000 traffic stops. Our team is gathering, analyzing, and releasing records from millions of traffic stops by law enforcement agencies across the country. Our goal is to help researchers, journalists, and policymakers investigate and improve interactions between police and the public.

Currently, a comprehensive, national repository detailing interactions between police and the public doesn’t exist. That’s why the Stanford Open Policing Project is collecting and standardizing data on vehicle and pedestrian stops from law enforcement departments across the country — and we’re making that information freely available. We’ve already gathered 130 million records from 31 state police agencies and have begun collecting data on stops from law enforcement agencies in major cities, as well.

We, the Stanford Open Policing Project, are an interdisciplinary team of researchers and journalists at Stanford University. We are committed to combining the academic rigor of statistical analysis with the explanatory power of data journalism….(More)”.

Claudette: an automated detector of potentially unfair clauses in online terms of service


Marco Lippi et al in AI and the Law Journal: “Terms of service of on-line platforms too often contain clauses that are potentially unfair to the consumer. We present an experimental study where machine learning is employed to automatically detect such potentially unfair clauses. Results show that the proposed system could provide a valuable tool for lawyers and consumers alike….(More)”.

Dirty Data, Bad Predictions: How Civil Rights Violations Impact Police Data, Predictive Policing Systems, and Justice


Paper by Rashida Richardson, Jason Schultz, and Kate Crawford: “Law enforcement agencies are increasingly using algorithmic predictive policing systems to forecast criminal activity and allocate police resources. Yet in numerous jurisdictions, these systems are built on data produced within the context of flawed, racially fraught and sometimes unlawful practices (‘dirty policing’). This can include systemic data manipulation, falsifying police reports, unlawful use of force, planted evidence, and unconstitutional searches. These policing practices shape the environment and the methodology by which data is created, which leads to inaccuracies, skews, and forms of systemic bias embedded in the data (‘dirty data’). Predictive policing systems informed by such data cannot escape the legacy of unlawful or biased policing practices that they are built on. Nor do claims by predictive policing vendors that these systems provide greater objectivity, transparency, or accountability hold up. While some systems offer the ability to see the algorithms used and even occasionally access to the data itself, there is no evidence to suggest that vendors independently or adequately assess the impact that unlawful and bias policing practices have on their systems, or otherwise assess how broader societal biases may affect their systems.

In our research, we examine the implications of using dirty data with predictive policing, and look at jurisdictions that (1) have utilized predictive policing systems and (2) have done so while under government commission investigations or federal court monitored settlements, consent decrees, or memoranda of agreement stemming from corrupt, racially biased, or otherwise illegal policing practices. In particular, we examine the link between unlawful and biased police practices and the data used to train or implement these systems across thirteen case studies. We highlight three of these: (1) Chicago, an example of where dirty data was ingested directly into the city’s predictive system; (2) New Orleans, an example where the extensive evidence of dirty policing practices suggests an extremely high risk that dirty data was or will be used in any predictive policing application, and (3) Maricopa County where despite extensive evidence of dirty policing practices, lack of transparency and public accountability surrounding predictive policing inhibits the public from assessing the risks of dirty data within such systems. The implications of these findings have widespread ramifications for predictive policing writ large. Deploying predictive policing systems in jurisdictions with extensive histories of unlawful police practices presents elevated risks that dirty data will lead to flawed, biased, and unlawful predictions which in turn risk perpetuating additional harm via feedback loops throughout the criminal justice system. Thus, for any jurisdiction where police have been found to engage in such practices, the use of predictive policing in any context must be treated with skepticism and mechanisms for the public to examine and reject such systems are imperative….(More)”.

Hundreds of Bounty Hunters Had Access to AT&T, T-Mobile, and Sprint Customer Location Data for Years


Joseph Cox at Motherboard: ” In January, Motherboard revealed that AT&T, T-Mobile, and Sprint were selling their customers’ real-time location data, which trickled down through a complex network of companies until eventually ending up in the hands of at least one bounty hunter. Motherboard was also able to purchase the real-time location of a T-Mobile phone on the black market from a bounty hunter source for $300. In response, telecom companies said that this abuse was a fringe case.

In reality, it was far from an isolated incident.

Around 250 bounty hunters and related businesses had access to AT&T, T-Mobile, and Sprint customer location data, with one bail bond firm using the phone location service more than 18,000 times, and others using it thousands or tens of thousands of times, according to internal documents obtained by Motherboard from a company called CerCareOne, a now-defunct location data seller that operated until 2017. The documents list not only the companies that had access to the data, but specific phone numbers that were pinged by those companies.

In some cases, the data sold is more sensitive than that offered by the service used by Motherboard last month, which estimated a location based on the cell phone towers that a phone connected to. CerCareOne sold cell phone tower data, but also sold highly sensitive and accurate GPS data to bounty hunters; an unprecedented move that means users could locate someone so accurately so as to see where they are inside a building. This company operated in near-total secrecy for over 5 years by making its customers agree to “keep the existence of CerCareOne.com confidential,” according to a terms of use document obtained by Motherboard.

Some of these bounty hunters then resold location data to those unauthorized to handle it, according to two independent sources familiar with CerCareOne’s operations.

The news shows how widely available Americans’ sensitive location data was to bounty hunters. This ease-of-access dramatically increased the risk of abuse….(More)”.

AI is sending people to jail—and getting it wrong


Karen Hao atMIT Technology Review : “Using historical data to train risk assessment tools could mean that machines are copying the mistakes of the past. …

AI might not seem to have a huge personal impact if your most frequent brush with machine-learning algorithms is through Facebook’s news feed or Google’s search rankings. But at the Data for Black Lives conference last weekend, technologists, legal experts, and community activists snapped things into perspective with a discussion of America’s criminal justice system. There, an algorithm can determine the trajectory of your life. The US imprisons more people than any other country in the world. At the end of 2016, nearly 2.2 million adults were being held in prisons or jails, and an additional 4.5 million were in other correctional facilities. Put another way, 1 in 38 adult Americans was under some form of correctional supervision. The nightmarishness of this situation is one of the few issues that unite politicians on both sides of the aisle. Under immense pressure to reduce prison numbers without risking a rise in crime, courtrooms across the US have turned to automated tools in attempts to shuffle defendants through the legal system as efficiently and safely as possible. This is where the AI part of our story begins….(More)”.

Machine Learning and the Rule of Law


Paper by Daniel L. Chen: “Predictive judicial analytics holds the promise of increasing the fairness of law. Much empirical work observes inconsistencies in judicial behavior. By predicting judicial decisions—with more or less accuracy depending on judicial attributes or case characteristics—machine learning offers an approach to detecting when judges most likely to allow extra legal biases to influence their decision making. In particular, low predictive accuracy may identify cases of judicial “indifference,” where case characteristics (interacting with judicial attributes) do no strongly dispose a judge in favor of one or another outcome. In such cases, biases may hold greater sway, implicating the fairness of the legal system….(More)”

The Paradox of Police Data


Stacy Wood in KULA: knowledge creation, dissemination, and preservation studies: “This paper considers the history and politics of ‘police data.’ Police data, I contend, is a category of endangered data reliant on voluntary and inconsistent reporting by law enforcement agencies; it is also inconsistently described and routinely housed in systems that were not designed with long-term strategies for data preservation, curation or management in mind. Moreover, whereas US law enforcement agencies have, for over a century, produced and published a great deal of data about crime, data about the ways in which police officers spend their time and make decisions about resources—as well as information about patterns of individual officer behavior, use of force, and in-custody deaths—is difficult to find. This presents a paradoxical situation wherein vast stores of extant data are completely inaccessible to the public. This paradoxical state is not new, but the continuation of a long history co-constituted by technologies, epistemologies and context….(More)”.

Participatory Design for Innovation in Access to Justice


Margaret Hagan at Daedalus: “Most access-to-justice technologies are designed by lawyers and reflect lawyers’ perspectives on what people need. Most of these technologies do not fulfill their promise because the people they are designed to serve do not use them. Participatory design, which was developed in Scandinavia as a process for creating better software, brings end users and other stakeholders into the design process to help decide what problems need to be solved and how. Work at the Stanford Legal Design Lab highlights new insights about what tools can provide the assistance that people actually need, and about where and how they are likely to access and use those tools. These participatory design models lead to more effective innovation and greater community engagement with courts and the legal system.

A decade into the push for innovation in access to justice, most efforts reflect the interests and concerns of courts and lawyers rather than the needs of the people the innovations are supposed to serve. New legal technologies and services, whether aiming to help people expunge their criminal records or to get divorced in more cooperative ways, have not been adopted by the general public. Instead, it is primarily lawyers who use them.1

One way to increase the likelihood that innovations will serve clients would be to involve clients in designing them. Participatory design emerged in Scandinavia in the 1970s as a way to think more effectively about decision-making in the workplace.  It evolved into a strategy for developing software in which potential users were invited to help define a vision of a product, and it has since been widely used for changing systems like elementary education, hospital services, and smart cities, which use data and technology to improve sustainability and foster economic development.3

Participatory design’s promise is that “system innovation” is more likely to be effective in producing tools that the target group will use and in spending existing resources efficiently to do so. Courts spend an enormous amount of money on information technology every year. But the technology often fails to meet courts’ goals: barely half of the people affected are satisfied with courts’ customer service….(More)”.

Innovations In The Fight Against Corruption In Latin America


Blog Post by Beth Noveck:  “…The Inter-American Development Bank (IADB) has published an important, practical and prescriptive report with recommendations for every sector of society from government to individuals on innovative and effective approaches to combatting corruption. While focused on Latin America, the report’s proposals, especially those on the application of new technology in the fight against corruption, are relevant around the world….

IADB Anti-Corruption Report

The recommendations about the use of new technologies, including big data, blockchain and collective intelligence, are drawn from an effort undertaken last year by the Governance Lab at New York University’s Tandon School of Engineering to crowdsource such solutions and advice on how to implement them from a hundred global experts. (See the Smarter Crowdsourcing against Corruption report here.)…

Big data, when published as open data, namely in a form that can be re-used without legal or technical restriction and in a machine-readable format that computers can analyze, is another tool in the fight against corruption. With machine readable, big and open data, those outside of government can pinpoint and measure irregularities in government contracting, as Instituto Observ is doing in Brazil.

Opening up judicial data, such as information about case processing times, judges’ and prosecutors’ salaries, information about selection processes, such as CV’s, professional and academic backgrounds, and written and oral exam scores provides activists and reformers with the tools to fight judicial corruption. The Civil Association for Equality and Justice (ACIJ) (a non-profit advocacy group) in Argentina uses such open justice data in its Concursos Transparentes (Transparent Contests) to fight judicial corruption. Jusbrasil is a private open justice company also using open data to reform the courts in Brazil….(More)”

Cybersecurity of the Person


Paper by Jeff Kosseff: “U.S. cybersecurity law is largely an outgrowth of the early-aughts concerns over identity theft and financial fraud. Cybersecurity laws focus on protecting identifiers such as driver’s licenses and social security numbers, and financial data such as credit card numbers. Federal and state laws require companies to protect this data and notify individuals when it is breached, and impose civil and criminal liability on hackers who steal or damage this data. In this paper, I argue that our current cybersecurity laws are too narrowly focused on financial harms. While such concerns remain valid, they are only one part of the cybersecurity challenge that our nation faces.

Too often overlooked by the cybersecurity profession are the harms to individuals, such as revenge pornography and online harassment. Our legal system typically addresses these harms through retrospective criminal prosecution and civil litigation, both of which face significant limits. Accounting for such harms in our conception of cybersecurity will help to better align our laws with these threats and reduce the likelihood of the harms occurring….(More)”,