Finland’s model in utilising forest data


Report by Matti Valonen et al: “The aim of this study is to depict the Finnish Forest Centre’s Metsään.fiwebsite’s background, objectives and implementation and to assess its needs for development and future prospects. The Metsään.fi-service included in the Metsään.fi-website is a free e-service for forest owners and corporate actors (companies, associations and service providers) in the forest sector, which aim is to support active decision-making among forest owners by offering forest resource data and maps on forest properties, by making contacts with the authorities easier through online services and to act as a platform for offering forest services, among other things.

In addition to the Metsään.fi-service, the website includes open forest data services that offer the users national forest resource data that is not linked with personal information.

Private forests are in a key position as raw material sources for traditional and new forest-based bioeconomy. In addition to wood material, the forests produce non-timber forest products (for example berries and mushrooms), opportunities for recreation and other ecosystem services.

Private forests cover roughly 60 percent of forest land, but about 80 percent of the domestic wood used by forest industry. In 2017 the value of the forest industry production was 21 billion euros, which is a fifth of the entire industry production value in Finland. The forest industry export in 2017 was worth about 12 billion euros, which covers a fifth of the entire export of goods. Therefore, the forest sector is important for Finland’s national economy…(More)”.

Internet of Water


About: “Water is the essence of life and vital to the well-being of every person, economy, and ecosystem on the planet. But around the globe and here in the United States, water challenges are mounting as climate change, population growth, and other drivers of water stress increase. Many of these challenges are regional in scope and larger than any one organization (or even states), such as the depletion of multi-state aquifers, basin-scale flooding, or the wide-spread accumulation of nutrients leading to dead zones. Much of the infrastructure built to address these problems decades ago, including our data infrastructure, are struggling to meet these challenges. Much of our water data exists in paper formats unique to the organization collecting the data. Often, these organizations existed long before the personal computer was created (1975) or the internet became mainstream (mid 1990’s). As organizations adopted data infrastructure in the late 1990’s, it was with the mindset of “normal infrastructure” at the time. It was built to last for decades, rather than adapt with rapid technological changes. 

New water data infrastructure with new technologies that enable data to flow seamlessly between users and generate information for real-time management are needed to meet our growing water challenges. Decision-makers need accurate, timely data to understand current conditions, identify sustainability problems, illuminate possible solutions, track progress, and adapt along the way. Stakeholders need easy-to-understand metrics of water conditions so they can make sure managers and policymakers protect the environment and the public’s water supplies. The water community needs to continually improve how they manage this complex resource by using data and communicating information to support decision-making. In short, a sustained effort is required to accelerate the development of open data and information systems to support sustainable water resources management. The Internet of Water (IoW) is designed to be just such an effort….(More)”.

Massive Citizen Science Effort Seeks to Survey the Entire Great Barrier Reef


Jessica Wynne Lockhart at Smithsonian: “In August, marine biologists Johnny Gaskell and Peter Mumby and a team of researchers boarded a boat headed into unknown waters off the coasts of Australia. For 14 long hours, they ploughed over 200 nautical miles, a Google Maps cache as their only guide. Just before dawn, they arrived at their destination of a previously uncharted blue hole—a cavernous opening descending through the seafloor.

After the rough night, Mumby was rewarded with something he hadn’t seen in his 30-year career. The reef surrounding the blue hole had nearly 100 percent healthy coral cover. Such a find is rare in the Great Barrier Reef, where coral bleaching events in 2016 and 2017 led to headlines proclaiming the reef “dead.”

“It made me think, ‘this is the story that people need to hear,’” Mumby says.

The expedition from Daydream Island off the coast of Queensland was a pilot program to test the methodology for the Great Reef Census, a citizen science project headed by Andy Ridley, founder of the annual conservation event Earth Hour. His latest organization, Citizens of the Great Barrier Reef, has set the ambitious goal of surveying the entire 1,400-mile-long reef system in 2020…(More)”.

The promise and peril of a digital ecosystem for the planet


Blog post by Jillian Campbell and David E Jensen: “A range of frontier and digital technologies have dramatically boosted the ways in which we can monitor the health of our planet. And sustain our future on it (Figure 1).

Figure 1. A range of frontier an digital technologies can be combined to monitor our planet and the sustainable use of natural resources (1)

If we can leverage this technology effectively, we will be able to assess and predict risks, increase transparency and accountability in the management of natural resources and inform markets as well as consumer choice. These actions are all required if we are to stand a better chance of achieving the Sustainable Development Goals (SDGs).

However, for this vision to become a reality, public and private sector actors must take deliberate action and collaborate to build a global digital ecosystem for the planet — one consisting of data, infrastructure, rapid analytics, and real-time insights. We are now at a pivotal moment in the history of our stewardship of this planet. A “tipping point” of sorts. And in order to guide the political action which is required to counter the speed, scope and severity of the environmental and climate crises, we must acquire and deploy these data sets and frontier technologies. Doing so can fundamentally change our economic trajectory and underpin a sustainable future.

This article shows how such a global digital ecosystem for the planet can be achieved — as well as what we risk if we do not take decisive action within the next 12 months….(More)”.

Sharing Private Data for Public Good


Stefaan G. Verhulst at Project Syndicate: “After Hurricane Katrina struck New Orleans in 2005, the direct-mail marketing company Valassis shared its database with emergency agencies and volunteers to help improve aid delivery. In Santiago, Chile, analysts from Universidad del Desarrollo, ISI Foundation, UNICEF, and the GovLab collaborated with Telefónica, the city’s largest mobile operator, to study gender-based mobility patterns in order to design a more equitable transportation policy. And as part of the Yale University Open Data Access project, health-care companies Johnson & Johnson, Medtronic, and SI-BONE give researchers access to previously walled-off data from 333 clinical trials, opening the door to possible new innovations in medicine.

These are just three examples of “data collaboratives,” an emerging form of partnership in which participants exchange data for the public good. Such tie-ups typically involve public bodies using data from corporations and other private-sector entities to benefit society. But data collaboratives can help companies, too – pharmaceutical firms share data on biomarkers to accelerate their own drug-research efforts, for example. Data-sharing initiatives also have huge potential to improve artificial intelligence (AI). But they must be designed responsibly and take data-privacy concerns into account.

Understanding the societal and business case for data collaboratives, as well as the forms they can take, is critical to gaining a deeper appreciation the potential and limitations of such ventures. The GovLab has identified over 150 data collaboratives spanning continents and sectors; they include companies such as Air FranceZillow, and Facebook. Our research suggests that such partnerships can create value in three main ways….(More)”.

Aliens in Europe. An open approach to involve more people in invasive species detection


Paper by Sven Schade et al: “Amplified by the phenomenon of globalisation, such as increased human mobility and the worldwide shipping of goods, we observe an increasing spread of animals and plants outside their native habitats. A few of these ‘aliens’ have negative impacts on their environment, including threats to local biodiversity, agricultural productivity, and human health. Our work addresses these threats, particularly within the European Union (EU), where a related legal framework has been established. We follow an open and participatory approach that allows more people to share their experiences of invasive alien species (IAS) in their surroundings. Over the past three years, we developed a mobile phone application, together with the underlying data management and validation infrastructure, which allows smartphone users to report a selected list of IAS. We put quality assurance and data integration mechanisms into place that allows the uptake of information into existing official systems in order to make it accessible to the relevant policy-making at EU level.

This article summarises our scientific methodology and technical approach, explains our decisions, and provides an outlook to the future of IAS monitoring involving citizens and utilising the latest technological advancements. Last but not least we emphasise on software design for reuse, within the domain of IAS monitoring, but also for supporting citizen science apps more generally. Whereas much could already be achieved, many scientific, technical and organizational challenges still remain to be addressed before data can be seamlessly shared and integrated. Here, we particularly highlight issues that emerge in an international setting, which involves many different stakeholders….(More)”.

Tackling Climate Change with Machine Learning


Paper by David Rolnick et al: “Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change….(More)”.

Behavioral Science and Climate Policy


Chapter by Michael Howlett and Stuti Rawat: “Behavioral science consists of the systematic analysis of processes underlying human behavior through experimentation and observation, drawing on knowledge, research, and methods from a variety of fields such as economics, psychology, and sociology. Because policymaking involves efforts to modify or alter the behavior of policy-takers and centers on the processes of decision-making in government, it has always been concerned with behavioral psychology. Classic studies of decision-making in the field derived their frameworks and concepts from psychology, and the founder of policy sciences, Harold Lasswell, was himself trained as a behavioral political scientist. Hence, it should not be surprising that the use of behavioral science is a feature of many policy areas, including climate change policy.

This is given extra emphasis, however, because climate change policymaking and the rise of climate change as a policy issue coincides with a resurgence in behaviorally inspired policy analysis and design brought about by the development of behavioral economics. Thus efforts to deal with climate change have come into being at a time when behavioral governance has been gaining traction worldwide under the influence of works by, among others, Kahneman and Tversky, Thaler, and Sunstein. Such behavioral governance studies have focused on the psychological and cognitive behavioral processes in individuals and collectives, in order to inform, design, and implement different modes of governing. They have been promoted by policy scholars, including many economists working in the area who prefer its insights to those put forward by classical or neoclassical economics.

In the context of climate change policy, behavioral science plays two key roles—through its use of behaviorally premised policy instruments as new modes of public policy being used or proposed to be used, in conjunction with traditional climate change policy tools; and as a way of understanding some of the barriers to compliance and policy design encountered by governments in combating the “super wicked problem” of climate change. Five kinds of behavioral tools have been found to be most commonly used in relation to climate change policy: provision of information, use of social norms, goal setting, default rules, and framing. A large proportion of behavioral tools has been used in the energy sector, because of its importance in the context of climate change action and the fact that energy consumption is easy to monitor, thereby facilitating impact assessment….(More)”.

The Impact of Citizen Environmental Science in the United States


Paper by George Wyeth, Lee C. Paddock, Alison Parker, Robert L. Glicksman and Jecoliah Williams: “An increasingly sophisticated public, rapid changes in monitoring technology, the ability to process large volumes of data, and social media are increasing the capacity for members of the public and advocacy groups to gather, interpret, and exchange environmental data. This development has the potential to alter the government-centric approach to environmental governance; however, citizen science has had a mixed record in influencing government decisions and actions. This Article reviews the rapid changes that are going on in the field of citizen science and examines what makes citizen science initiatives impactful, as well as the barriers to greater impact. It reports on 10 case studies, and evaluates these to provide findings about the state of citizen science and recommendations on what might be done to increase its influence on environmental decisionmaking….(More)”,

We Need a Data-Rich Picture of What’s Killing the Planet


Clive Thompson at Wired: “…Marine litter isn’t the only hazard whose contours we can’t fully see. The United Nations has 93 indicators to measure the environmental dimensions of “sustainable development,” and amazingly, the UN found that we have little to no data on 68 percent of them—like how rapidly land is being degraded, the rate of ocean acidification, or the trade in poached wildlife. Sometimes this is because we haven’t collected it; in other cases some data exists but hasn’t been shared globally, or it’s in a myriad of incompatible formats. No matter what, we’re flying blind. “And you can’t manage something if you can’t measure it,” says David Jensen, the UN’s head of environmental peacebuilding.

In other words, if we’re going to help the planet heal and adapt, we need a data revolution. We need to build a “digital eco­system for the environment,” as Jensen puts it.

The good news is that we’ve got the tools. If there’s one thing tech excels at (for good and ill), it’s surveillance, right? We live in a world filled with cameras and pocket computers, titanic cloud computing, and the eerily sharp insights of machine learning. And this stuff can be used for something truly worthwhile: studying the planet.

There are already some remarkable cases of tech helping to break through the fog. Consider Global Fishing Watch, a nonprofit that tracks the world’s fishing vessels, looking for overfishing. They use everything from GPS-like signals emitted by ships to satellite infrared imaging of ship lighting, plugged into neural networks. (It’s massive, cloud-scale data: over 60 million data points per day, making the AI more than 90 percent accurate at classifying what type of fishing activity a boat is engaged in.)

“If a vessel is spending its time in an area that has little tuna and a lot of sharks, that’s questionable,” says Brian Sullivan, cofounder of the project and a senior program manager at Google Earth Outreach. Crucially, Global Fishing Watch makes its data open to anyone­­­—so now the National Geographic Society is using it to lobby for new marine preserves, and governments and nonprofits use it to target illicit fishing.

If we want better environmental data, we’ll need for-profit companies with the expertise and high-end sensors to pitch in too. Planet, a firm with an array of 140 satellites, takes daily snapshots of the entire Earth. Customers like insurance and financial firms love that sort of data. (It helps them understand weather and climate risk.) But Planet also offers it to services like Global Forest Watch, which maps deforestation and makes the information available to anyone (like activists who help bust illegal loggers). Meanwhile, Google’s skill in cloud-based data crunching helps illuminate the state of surface water: Google digitized 30 years of measurements from around the globe—extracting some from ancient magnetic tapes—then created an easy-to-use online tool that lets resource-poor countries figure out where their water needs protecting….(More)”.