Why Big Data Is a Big Deal for Cities


John M. Kamensky in Governing: “We hear a lot about “big data” and its potential value to government. But is it really fulfilling the high expectations that advocates have assigned to it? Is it really producing better public-sector decisions? It may be years before we have definitive answers to those questions, but new research suggests that it’s worth paying a lot of attention to.

University of Kansas Prof. Alfred Ho recently surveyed 65 mid-size and large cities to learn what is going on, on the front line, with the use of big data in making decisions. He found that big data has made it possible to “change the time span of a decision-making cycle by allowing real-time analysis of data to instantly inform decision-making.” This decision-making occurs in areas as diverse as program management, strategic planning, budgeting, performance reporting and citizen engagement.

Cities are natural repositories of big data that can be integrated and analyzed for policy- and program-management purposes. These repositories include data from public safety, education, health and social services, environment and energy, culture and recreation, and community and business development. They include both structured data, such as financial and tax transactions, and unstructured data, such as recorded sounds from gunshots and videos of pedestrian movement patterns. And they include data supplied by the public, such as the Boston residents who use a phone app to measure road quality and report problems.

These data repositories, Ho writes, are “fundamental building blocks,” but the challenge is to shift the ownership of data from separate departments to an integrated platform where the data can be shared.

There’s plenty of evidence that cities are moving in that direction and that they already are systematically using big data to make operational decisions. Among the 65 cities that Ho examined, he found that 49 have “some form of data analytics initiatives or projects” and that 30 have established “a multi-departmental team structure to do strategic planning for these data initiatives.”….The effective use of big data can lead to dialogs that cut across school-district, city, county, business and nonprofit-sector boundaries. But more importantly, it provides city leaders with the capacity to respond to citizens’ concerns more quickly and effectively….(More)”

DataRefuge


DataRefuge is a public, collaborative project designed to address the following concerns about federal climate and environmental data:

  • What are the best ways to safeguard data?
  • How do federal agencies play crucial roles in data collection, management, and distribution?
  • How do government priorities impact data’s accessibility?
  • Which projects and research fields depend on federal data?
  • Which data sets are of value to research and local communities, and why?

DataRefuge is also an initiative committed to identifying, assessing, prioritizing, securing, and distributing reliable copies of federal climate and environmental data so that it remains available to researchers. Data collected as part of the #DataRefuge initiative will be stored in multiple, trusted locations to help ensure continued accessibility.

DataRefuge acknowledges–and in fact draws attention to–the fact that there are no guarantees of perfectly safe information. But there are ways that we can create safe and trustworthy copies. DataRefuge is thus also a project to develop the best methods, practices, and protocols to do so.

DataRefuge depends on local communities. We welcome new collaborators who want to organize DataRescue Events or build DataRefuge in other ways.

There are many ways to be involved with building DataRefuge. They’re not mutually exclusive!…(More)”

Corporate Social Responsibility for a Data Age


Stefaan G. Verhulst in the Stanford Social Innovation Review: “Proprietary data can help improve and save lives, but fully harnessing its potential will require a cultural transformation in the way companies, governments, and other organizations treat and act on data….

We live, as it is now common to point out, in an era of big data. The proliferation of apps, social media, and e-commerce platforms, as well as sensor-rich consumer devices like mobile phones, wearable devices, commercial cameras, and even cars generate zettabytes of data about the environment and about us.

Yet much of the most valuable data resides with the private sector—for example, in the form of click histories, online purchases, sensor data, and call data records. This limits its potential to benefit the public and to turn data into a social asset. Consider how data held by business could help improve policy interventions (such as better urban planning) or resiliency at a time of climate change, or help design better public services to increase food security.

Data responsibility suggests steps that organizations can take to break down these private barriers and foster so-called data collaboratives, or ways to share their proprietary data for the public good. For the private sector, data responsibility represents a new type of corporate social responsibility for the 21st century.

While Nepal’s Ncell belongs to a relatively small group of corporations that have shared their data, there are a few encouraging signs that the practice is gaining momentum. In Jakarta, for example, Twitter exchanged some of its data with researchers who used it to gather and display real-time information about massive floods. The resulting website, PetaJakarta.org, enabled better flood assessment and management processes. And in Senegal, the Data for Development project has brought together leading cellular operators to share anonymous data to identify patterns that could help improve health, agriculture, urban planning, energy, and national statistics.

Examples like this suggest that proprietary data can help improve and save lives. But to fully harness the potential of data, data holders need to fulfill at least three conditions. I call these the “the three pillars of data responsibility.”…

The difficulty of translating insights into results points to some of the larger social, political, and institutional shifts required to achieve the vision of data responsibility in the 21st century. The move from data shielding to data sharing will require that we make a cultural transformation in the way companies, governments, and other organizations treat and act on data. We must incorporate new levels of pro-activeness, and make often-unfamiliar commitments to transparency and accountability.

By way of conclusion, here are four immediate steps—essential but not exhaustive—we can take to move forward:

  1. Data holders should issue a public commitment to data responsibility so that it becomes the default—an expected, standard behavior within organizations.
  2. Organizations should hire data stewards to determine what and when to share, and how to protect and act on data.
  3. We must develop a data responsibility decision tree to assess the value and risk of corporate data along the data lifecycle.
  4. Above all, we need a data responsibility movement; it is time to demand data responsibility to ensure data improves and safeguards people’s lives…(More)”

RideComfort: A Development of Crowdsourcing Smartphones in Measuring Train Ride Quality


Adam Azzoug and Sakdirat Kaewunruen in Frontiers in Built Environment: “Among the many million train journeys taking place every day, not all of them are being measured or monitored for ride comfort. Improving ride comfort is important for railway companies to attract more passengers to their train services. Giving passengers the ability to measure ride comfort themselves using their smartphones allows railway companies to receive instant feedback from passengers regarding the ride quality on their trains. The purpose of this development is to investigate the feasibility of using smartphones to measure vibration-based ride comfort on trains. This can be accomplished by developing a smartphone application, analyzing the data recorded by the application, and verifying the data by comparing it to data from a track inspection vehicle or an accelerometer. A literature review was undertaken to examine the commonly used standards to evaluate ride comfort, such as the BS ISO 2631-1:1997 standard and Sperling’s ride index as proposed by Sperling and Betzhold (1956). The literature review has also revealed some physical causes of ride discomfort such as vibrations induced by roughness and irregularities present at the wheel/rail interface. We are the first to use artificial neural networks to map data derived from smartphones in order to evaluate ride quality. Our work demonstrates the merits of using smartphones to measure ride comfort aboard trains and suggests recommendations for future technological improvement. Our data argue that the accelerometers found in modern smartphones are of sufficient quality to be used in evaluating ride comfort. The ride comfort levels predicted both by BS ISO 2631-1 and Sperling’s index exhibit excellent agreement…(More)”

Rules for a Flat World – Why Humans Invented Law and How to Reinvent It for a Complex Global Economy


Book by Gillian Hadfield: “… picks up where New York Times columnist Thomas Friedman left off in his influential 2005 book, The World is Flat. Friedman was focused on the infrastructure of communications and technology-the new web-based platform that allows business to follow the hunt for lower costs, higher value and greater efficiency around the planet seemingly oblivious to the boundaries of nation states. Hadfield peels back this technological platform to look at the ‘structure that lies beneath’—our legal infrastructure, the platform of rules about who can do what, when and how. Often taken for granted, economic growth throughout human history has depended at least as much on the evolution of new systems of rules to support ever-more complex modes of cooperation and trade as it has on technological innovation. When Google rolled out YouTube in over one hundred countries around the globe simultaneously, for example, it faced not only the challenges of technology but also the staggering problem of how to build success in the context of a bewildering and often conflicting patchwork of nation-state-based laws and legal systems affecting every aspect of the business-contract, copyright, encryption, censorship, advertising and more. Google is not alone. A study presented at the World Economic Forum in Davos in 2011 found that for global firms, the number one challenge of the modern economy is increasing complexity, and the number one source of complexity is law. Today, even our startups, the engines of economic growth, are global from Day One.

Put simply, the law and legal methods on which we currently rely have failed to evolve along with technology. They are increasingly unable to cope with the speed, complexity, and constant border-crossing of our new globally inter-connected environment. Our current legal systems are still rooted in the politics-based nation state platform on which the industrial revolution was built. Hadfield argues that even though these systems supported fantastic growth over the past two centuries, today they are too slow, costly, cumbersome and localized to support the exponential rise in economic complexity they fostered. …

The answer to our troubles with law, however, is not the one critics usually reach for—to have less of it. Recognizing that law provides critical infrastructure for the cooperation and collaboration on which economic growth is built is the first step, Hadfield argues, to building a legal environment that does more of what we need it to do and less of what we don’t. …(More)”

The Innovation-Friendly Organization


Book by Anna Simpson: “This book explores five cultural traits – Diversity, Integrity, Curiosity, Reflection, and Connection – that encourage the birth and successful development of new ideas, and shows how organizations that are serious about innovation can embrace them.

Innovation – the driver of change and resilience – It is totally dependent on culture, the social environment which shapes how ideas emerge and evolve. Ideas need to breathe, and culture determines the quality of the air. If it’s stuffy and lacks flow, then no idea, however brilliant, will live long enough to fulfil its potential.

Creating these innovation-friendly conditions is one of the key challenges facing organizations today, and one that is especially difficult for them – focused as they are on efficiency and control. Innovation, Anna Simpson argues, begins with diversity of thought and attitude: the opposite of conformity and standardisation.

Likewise, with ongoing pressures to deliver results before yesterday, how can organizations allow sufficient space for the seemingly aimless process of following interesting possibilities and pondering on the impact of various options?Anna Simpson shows how large organizations can adapt their culture to enable the exchange of different perspectives; to support each person to bring their whole self to their work; to embrace the aimlessness that fosters creative experimentation; to take the time to approach change with the care it deserves, and – lastly – to develop the collective strength needed to face the ultimate ‘sledgehammer test’….(More)”.

Big data is adding a whole new dimension to public spaces – here’s how


 at the Conversation: “Most of us encounter public spaces in our daily lives: whether it’s physical space (a sidewalk, a bench, or a road), a visual element (a panorama, a cityscape) or a mode of transport (bus, train or bike share). But over the past two decades, digital technologies such as smart phones and the internet of things are adding extra layers of information to our public spaces, and transforming the urban environment.

Traditionally, public spaces have been carefully designed by urban planners and architects, and managed by private companies or public bodies. The theory goes that people’s attention and behaviour in public spaces can be guided by the way that architects plan the built environment. Take, for example, Leicester Square in London: the layout of green areas, pathways and benches makes it clear where people are supposed to walk, sit down and look at the natural elements. The public space is a given, which people receive and use within the terms and guidelines provided.

While these ideas are still relevant today, information is now another key material in public spaces. It changes the way that people experience the city. Uber shows us the position of its closest drivers, even when they’re out of sight; route-finding apps such as Google Maps helps us to navigate through unfamiliar territory; Pokemon Go places otherworldly creatures on the pavement right before our eyes.

But we’re not just receiving information – we’re also generating it. Whether you’re “liking” something on Facebook, searching Google, shopping online, or even exchanging an email address for Wi-Fi access; all of the data created by these actions are collected, stored, managed, analysed and brokered to generate monetary value.

Data deluge

But as well as creating profits for private companies, these data provide accurate and continuous updates of how society is evolving, which can be used by governments and designers to manage and design public spaces.

Before big data, the architects designed spaces based on mere assumptions about how people were likely to use them. Success was measured by “small”, localised data methods, such as post-occupancy evaluations, where built projects are observed during their use and assessed against the designers’ original intentions, as well as fitness for purpose and performance. For the most part, the people who used public spaces did not have a say in how they were designed or managed….(More)”

‘Collective intelligence’ is not necessarily present in virtual groups


Jordan B. Barlow and Alan R. Dennis at LSE: “Do groups of smart people perform better than groups of less intelligent people?

Research published in Science magazine in 2010 reported that groups, like individuals, have a certain level of “collective intelligence,” such that some groups perform consistently well across many different types of tasks, while other groups perform consistently poorly. Collective intelligence is similar to individual intelligence, but at the group level.

Interestingly, the Science study found that collective intelligence was not related to the individual intelligence of group members; groups of people with higher intelligence did not perform better than groups with lower intelligence. Instead, the study found that high performing teams had members with higher social sensitivity – the ability to read the emotions of others using visual facial cues.

Social sensitivity is important when we sit across a table from each other. But what about online, when we exchange emails or text messages? Does social sensitivity matter when I can’t see your face?

We examined the collective intelligence in an online environment in which groups used text-based computer-mediated communication. We followed the same procedures as the original Science study, which used the approach typically used to measure individual intelligence. In individual intelligence tests, a person completes several small “tasks” or problems. An analysis of task scores typically demonstrates that task scores are correlated, meaning that if a person does well on one problem, it is likely that they did well on other problems….

The results were not what we expected. The correlations between our groups’ performance scores were either not statistically significant or significantly negative, as shown in Table 1. The average correlation between any two tasks was -0.05, indicating that performance on one task was not correlated with performance on other tasks. In other words, groups who performed well on one of the tasks were unlikely to perform well on the other tasks…

Our findings challenge the conclusion reported in Science that groups have a general collective intelligence analogous to individual intelligence. Our study shows that no collective intelligence factor emerged when groups used a popular commercial text-based online tool. That is, when using tools with limited visual cues, groups that performed well on one task were no more likely to perform well on a different task. Thus the “collective intelligence” factor related to social sensitivity that was reported in Science is not collective intelligence; it is instead a factor associated with the ability to work well using face-to-face communication, and does not transcend media….(More)”

Selected Readings on Algorithmic Scrutiny


By Prianka Srinivasan, Andrew Young and Stefaan Verhulst

The Living Library’s Selected Readings series seeks to build a knowledge base on innovative approaches for improving the effectiveness and legitimacy of governance. This curated and annotated collection of recommended works on the topic of algorithmic scrutiny was originally published in 2017.

Introduction

From government policy, to criminal justice, to our news feeds; to business and consumer practices, the processes that shape our lives both online and off are more and more driven by data and the complex algorithms used to form rulings or predictions. In most cases, these algorithms have created “black boxes” of decision making, where models remain inscrutable and inaccessible. It should therefore come as no surprise that several observers and policymakers are calling for more scrutiny of how algorithms are designed and work, particularly when their outcomes convey intrinsic biases or defy existing ethical standards.

While the concern about values in technology design is not new, recent developments in machine learning, artificial intelligence and the Internet of Things have increased the urgency to establish processes and develop tools to scrutinize algorithms.

In what follows, we have curated several readings covering the impact of algorithms on:

  • Information Intermediaries;
  • Governance
  • Finance
  • Justice

In addition we have selected a few readings that provide insight on possible processes and tools to establish algorithmic scrutiny.

Selected Reading List

Information Intermediaries

Governance

Consumer Finance

Justice

Tools & Process Toward Algorithmic Scrutiny

Annotated Selected Reading List

Information Intermediaries

Diakopoulos, Nicholas. “Algorithmic accountability: Journalistic investigation of computational power structures.” Digital Journalism 3.3 (2015): 398-415. http://bit.ly/.

  • This paper attempts to substantiate the notion of accountability for algorithms, particularly how they relate to media and journalism. It puts forward the notion of “algorithmic power,” analyzing the framework of influence such systems exert, and also introduces some of the challenges in the practice of algorithmic accountability, particularly for computational journalists.
  • Offers a basis for how algorithms can be analyzed, built in terms of the types of decisions algorithms make in prioritizing, classifying, associating, and filtering information.

Diakopoulos, Nicholas, and Michael Koliska. “Algorithmic transparency in the news media.” Digital Journalism (2016): 1-20. http://bit.ly/2hMvXdE.

  • This paper analyzes the increased use of “computational journalism,” and argues that though transparency remains a key tenet of journalism, the use of algorithms in gathering, producing and disseminating news undermines this principle.
  • It first analyzes what the ethical principle of transparency means to journalists and the media. It then highlights the findings from a focus-group study, where 50 participants from the news media and academia were invited to discuss three different case studies related to the use of algorithms in journalism.
  • They find two key barriers to algorithmic transparency in the media: “(1) a lack of business incentives for disclosure, and (2) the concern of overwhelming end-users with too much information.”
  • The study also finds a variety of opportunities for transparency across the “data, model, inference, and interface” components of an algorithmic system.

Napoli, Philip M. “The algorithm as institution: Toward a theoretical framework for automated media production and consumption.” Fordham University Schools of Business Research Paper (2013). http://bit.ly/2hKBHqo

  • This paper puts forward an analytical framework to discuss the algorithmic content creation of media and journalism in an attempt to “close the gap” on theory related to automated media production.
  • By borrowing concepts from institutional theory, the paper finds that algorithms are distinct forms of media institutions, and the cultural and political implications of this interpretation.
  • It urges further study in the field of “media sociology” to further unpack the influence of algorithms, and their role in institutionalizing certain norms, cultures and ways of thinking.

Introna, Lucas D., and Helen Nissenbaum. “Shaping the Web: Why the politics of search engines matters.” The Information Society 16.3 (2000): 169-185. http://bit.ly/2ijzsrg.

  • This paper, published 16 years ago, provides an in-depth account of some of the risks related to search engine optimizations, and the biases and harms these can introduce, particularly on the nature of politics.
  • Suggests search engines can be designed to account for these political dimensions, and better correlate with the ideal of the World Wide Web as being a place that is open, accessible and democratic.
  • According to the paper, policy (and not the free market) is the only way to spur change in this field, though the current technical solutions we have introduce further challenges.

Gillespie, Tarleton. “The Relevance of Algorithms.” Media
technologies: Essays on communication, materiality, and society (2014): 167. http://bit.ly/2h6ASEu.

  • This paper suggests that the extended use of algorithms, to the extent that they undercut many aspects of our lives, (Tarleton calls this public relevance algorithms) are fundamentally “producing and certifying knowledge.” In this ability to create a particular “knowledge logic,” algorithms are a primary feature of our information ecosystem.
  • The paper goes on to map 6 dimensions of these public relevance algorithms:
    • Patterns of inclusion
    • Cycles of anticipation
    • The evaluation of relevance
    • The promise of algorithmic objectivity
    • Entanglement with practice
    • The production of calculated publics
  • The paper concludes by highlighting the need for a sociological inquiry into the function, implications and contexts of algorithms, and to “soberly  recognize their flaws and fragilities,” despite the fact that much of their inner workings remain hidden.

Rainie, Lee and Janna Anderson. “Code-Dependent: Pros and Cons of the Algorithm Age.” Pew Research Center. February 8, 2017. http://bit.ly/2kwnvCo.

  • This Pew Research Center report examines the benefits and negative impacts of algorithms as they become more influential in different sectors and aspects of daily life.
  • Through a scan of the research and practice, with a particular focus on the research of experts in the field, Rainie and Anderson identify seven key themes of the burgeoning Algorithm Age:
    • Algorithms will continue to spread everywhere
    • Good things lie ahead
    • Humanity and human judgment are lost when data and predictive modeling become paramount
    • Biases exist in algorithmically-organized systems
    • Algorithmic categorizations deepen divides
    • Unemployment will rise; and
    • The need grows for algorithmic literacy, transparency and oversight

Tufekci, Zeynep. “Algorithmic harms beyond Facebook and Google: Emergent challenges of computational agency.” Journal on Telecommunications & High Technology Law 13 (2015): 203. http://bit.ly/1JdvCGo.

  • This paper establishes some of the risks and harms in regard to algorithmic computation, particularly in their filtering abilities as seen in Facebook and other social media algorithms.
  • Suggests that the editorial decisions performed by algorithms can have significant influence on our political and cultural realms, and categorizes the types of harms that algorithms may have on individuals and their society.
  • Takes two case studies–one from the social media coverage of the Ferguson protests, the other on how social media can influence election turnouts–to analyze the influence of algorithms. In doing so, this paper lays out the “tip of the iceberg” in terms of some of the challenges and ethical concerns introduced by algorithmic computing.

Mittelstadt, Brent, Patrick Allo, Mariarosaria Taddeo, Sandra Wachter, and Luciano Floridi. “The Ethics of Algorithms: Mapping the Debate.” Big Data & Society (2016): 3(2). http://bit.ly/2kWNwL6

  • This paper provides significant background and analysis of the ethical context of algorithmic decision-making. It primarily seeks to map the ethical consequences of algorithms, which have adopted the role of a mediator between data and action within societies.
  • Develops a conceptual map of 6 ethical concerns:
      • Inconclusive Evidence
      • Inscrutable Evidence
      • Misguided Evidence
      • Unfair Outcomes
      • Transformative Effects
    • Traceability
  • The paper then reviews existing literature, which together with the map creates a structure to inform future debate.

Governance

Janssen, Marijn, and George Kuk. “The challenges and limits of big data algorithms in technocratic governance.” Government Information Quarterly 33.3 (2016): 371-377. http://bit.ly/2hMq4z6.

  • In regarding the centrality of algorithms in enforcing policy and extending governance, this paper analyzes the “technocratic governance” that has emerged by the removal of humans from decision making processes, and the inclusion of algorithmic automation.
  • The paper argues that the belief in technocratic governance producing neutral and unbiased results, since their decision-making processes are uninfluenced by human thought processes, is at odds with studies that reveal the inherent discriminatory practices that exist within algorithms.
  • Suggests that algorithms are still bound by the biases of designers and policy-makers, and that accountability is needed to improve the functioning of an algorithm. In order to do so, we must acknowledge the “intersecting dynamics of algorithm as a sociotechnical materiality system involving technologies, data and people using code to shape opinion and make certain actions more likely than others.”

Just, Natascha, and Michael Latzer. “Governance by algorithms: reality construction by algorithmic selection on the Internet.” Media, Culture & Society (2016): 0163443716643157. http://bit.ly/2h6B1Yv.

  • This paper provides a conceptual framework on how to assess the governance potential of algorithms, asking how technology and software governs individuals and societies.
  • By understanding algorithms as institutions, the paper suggests that algorithmic governance puts in place more evidence-based and data-driven systems than traditional governance methods. The result is a form of governance that cares more about effects than causes.
  • The paper concludes by suggesting that algorithmic selection on the Internet tends to shape individuals’ realities and social orders by “increasing individualization, commercialization, inequalities, deterritorialization, and decreasing transparency, controllability, predictability.”

Consumer Finance

Hildebrandt, Mireille. “The dawn of a critical transparency right for the profiling era.” Digital Enlightenment Yearbook 2012 (2012): 41-56. http://bit.ly/2igJcGM.

  • Analyzes the use of consumer profiling by online businesses in order to target marketing and services to their needs. By establishing how this profiling relates to identification, the author also offers some of the threats to democracy and the right of autonomy posed by these profiling algorithms.
  • The paper concludes by suggesting that cross-disciplinary transparency is necessary to design more accountable profiling techniques that can match the extension of “smart environments” that capture ever more data and information from users.

Reddix-Smalls, Brenda. “Credit Scoring and Trade Secrecy: An Algorithmic Quagmire or How the Lack of Transparency in Complex Financial Models Scuttled the Finance Market.” UC Davis Business Law Journal 12 (2011): 87. http://bit.ly/2he52ch

  • Analyzes the creation of predictive risk models in financial markets through algorithmic systems, particularly in regard to credit scoring. It suggests that these models were corrupted in order to maintain a competitive market advantage: “The lack of transparency and the legal environment led to the use of these risk models as predatory credit pricing instruments as opposed to accurate credit scoring predictive instruments.”
  • The paper suggests that without greater transparency of these financial risk model, and greater regulation over their abuse, another financial crisis like that in 2008 is highly likely.

Justice

Aas, Katja Franko. “Sentencing Transparency in the Information Age.” Journal of Scandinavian Studies in Criminology and Crime Prevention 5.1 (2004): 48-61. http://bit.ly/2igGssK.

  • This paper questions the use of predetermined sentencing in the US judicial system through the application of computer technology and sentencing information systems (SIS). By assessing the use of these systems between the English speaking world and Norway, the author suggests that such technological approaches to sentencing attempt to overcome accusations of mistrust, uncertainty and arbitrariness often leveled against the judicial system.
  • However, in their attempt to rebuild trust, such technological solutions can be seen as an attempt to remedy a flawed view of judges by the public. Therefore, the political and social climate must be taken into account when trying to reform these sentencing systems: “The use of the various sentencing technologies is not only, and not primarily, a matter of technological development. It is a matter of a political and cultural climate and the relations of trust in a society.”

Cui, Gregory. “Evidence-Based Sentencing and the Taint of Dangerousness.” Yale Law Journal Forum 125 (2016): 315-315. http://bit.ly/1XLAvhL.

  • This short essay submitted on the Yale Law Journal Forum calls for greater scrutiny of “evidence based sentencing,” where past data is computed and used to predict future criminal behavior of a defendant. The author suggests that these risk models may undermine the Constitution’s prohibition of bills of attainder, and also are unlawful for inflicting punishment without a judicial trial.

Tools & Processes Toward Algorithmic Scrutiny

Ananny, Mike and Crawford, Kate. “Seeing without knowing: Limitations of the transparency ideal and its application to algorithmic accountability.” New Media & Society. SAGE Publications. 2016. http://bit.ly/2hvKc5x.

  • This paper attempts to critically analyze calls to improve the transparency of algorithms, asking how historically we are able to confront the limitations of the transparency ideal in computing.
  • By establishing “transparency as an ideal” the paper tracks the philosophical and historical lineage of this principle, attempting to establish what laws and provisions were put in place across the world to keep up with and enforce this ideal.
  • The paper goes on to detail the limits of transparency as an ideal, arguing, amongst other things, that it does not necessarily build trust, it privileges a certain function (seeing) over others (say, understanding) and that it has numerous technical limitations.
  • The paper ends by concluding that transparency is an inadequate way to govern algorithmic systems, and that accountability must acknowledge the ability to govern across systems.

Datta, Anupam, Shayak Sen, and Yair Zick. “Algorithmic Transparency via Quantitative Input Influence.Proceedings of 37th IEEE Symposium on Security and Privacy. 2016. http://bit.ly/2hgyLTp.

  • This paper develops what is called a family of Quantitative Input Influence (QII) measures “that capture the degree of influence of inputs on outputs of systems.” The attempt is to theorize a transparency report that is to accompany any algorithmic decisions made, in order to explain any decisions and detect algorithmic discrimination.
  • QII works by breaking “correlations between inputs to allow causal reasoning, and computes the marginal influence of inputs in situations where inputs cannot affect outcomes alone.”
  • Finds that these QII measures are useful in scrutinizing algorithms when “black box” access is available.

Goodman, Bryce, and Seth Flaxman. “European Union regulations on algorithmic decision-making and a right to explanationarXiv preprint arXiv:1606.08813 (2016). http://bit.ly/2h6xpWi.

  • This paper analyzes the implications of a new EU law, to be enacted in 2018, that calls to “restrict automated individual decision-making (that is, algorithms that make decisions based on user level predictors) which ‘significantly affect’ users.” The law will also allow for a “right to explanation” where users can ask for an explanation behind automated decision made about them.
  • The paper, while acknowledging the challenges in implementing such laws, suggests that such regulations can spur computer scientists to create algorithms and decision making systems that are more accountable, can provide explanations, and do not produce discriminatory results.
  • The paper concludes by stating algorithms and computer systems should not aim to be simply efficient, but also fair and accountable. It is optimistic about the ability to put in place interventions to account for and correct discrimination.

Kizilcec, René F. “How Much Information?: Effects of Transparency on Trust in an Algorithmic Interface.” Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, 2016. http://bit.ly/2hMjFUR.

  • This paper studies how transparency of algorithms affects our impression of trust by conducting an online field experiment, where participants enrolled in a MOOC a given different explanations for the computer generated grade given in their class.
  • The study found that “Individuals whose expectations were violated (by receiving a lower grade than expected) trusted the system less, unless the grading algorithm was made more transparent through explanation. However, providing too much information eroded this trust.”
  • In conclusion, the study found that a balance of transparency was needed to maintain trust amongst the participants, suggesting that pure transparency of algorithmic processes and results may not correlate with high feelings of trust amongst users.

Kroll, Joshua A., et al. “Accountable Algorithms.” University of Pennsylvania Law Review 165 (2016). http://bit.ly/2i6ipcO.

  • This paper suggests that policy and legal standards need to be updated given the increased use of algorithms to perform tasks and make decisions in arenas that people once did. An “accountability mechanism” is lacking in many of these automated decision making processes.
  • The paper argues that mere transparency through the divulsion of source code is inadequate when confronting questions of accountability. Rather, technology itself provides a key to create algorithms and decision making apparatuses more inline with our existing political and legal frameworks.
  • The paper assesses some computational techniques that may provide possibilities to create accountable software and reform specific cases of automated decisionmaking. For example, diversity and anti-discrimination orders can be built into technology to ensure fidelity to policy choices.

Open-Sourcing Google Earth Enterprise


Geo Developers Blog: “We are excited to announce that we are open-sourcing Google Earth Enterprise (GEE), the enterprise product that allows developers to build and host their own private maps and 3D globes. With this release, GEE Fusion, GEE Server, and GEE Portable Server source code (all 470,000+ lines!) will be published on GitHub under the Apache2 license in March.

Originally launched in 2006, Google Earth Enterprise provides customers the ability to build and host private, on-premise versions of Google Earth and Google Maps. In March 2015, we announced the deprecation of the product and the end of all sales. To provide ample time for customers to transition, we have provided a two year maintenance period ending on March 22, 2017. During this maintenance period, product updates have been regularly shipped and technical support has been available to licensed customers….

GCP is increasingly used as a source for geospatial data. Google’s Earth Engine has made available over a petabyte of raster datasets which are readily accessible and available to the public on Google Cloud Storage. Additionally, Google uses Cloud Storage to provide data to customers who purchase Google Imagerytoday. Having access to massive amounts of geospatial data, on the same platform as your flexible compute and storage, makes generating high quality Google Earth Enterprise Databases and Portables easier and faster than ever.

We will be sharing a series of white papers and other technical resources to make it as frictionless as possible to get open source GEE up and running on Google Cloud Platform. We are excited about the possibilities that open-sourcing enables, and we trust this is good news for our community. We will be sharing more information when we launch the code in March on GitHub. For general product information, visit the Google Earth Enterprise Help Center. Review the essential and advanced training for how to use Google Earth Enterprise, or learn more about the benefits of Google Cloud Platform….(More)”