Estonia Is Demonstrating How Government Should Work in a Digital World


Motherboard: “In May, Manu Sporny became the 10,000th “e-Resident” of Estonia. Sporny, the founder and CEO of a digital payments and identity company located in the United States, has never set foot in Estonia. However, he heard about the country’s e-Residency program and decided it would be an obvious choice for his company’s European headquarters.

People like Sporny are why Estonia launched a digital residency program in December 2014. The program allows anyone in the world to apply for a digital identity, which will let them: establish and run a location independent business online, get easier access to EU markets, open a bank account and conduct e-banking, use international payment service providers, declare taxes, and sign all relevant documents and contracts remotely…..

One of the most essential components of a functioning digital society is a secure digital identity. The state and the private sector need to know who is accessing these online services. Likewise, users need to feel secure that their identity is protected.

Estonia found the solution to this problem. In 2002, we started issuing residents a mandatory ID-card with a chip that empowers them to categorically identify themselves and verify legal transactions and documents through a digital signature. A digital signature has been legally equivalent to a handwritten one throughout the European Union—not just in Estonia—since 1999.

With this new digital identity system, the state could serve not only areas with a low population, but also the entire Estonian diaspora. Estonians anywhere in the world could maintain a connection to their homeland via e-services, contribute to the legislative process, and even participate in elections. Once the government realized that it could scale this service worldwide, it seemed logical to offer its e-services to those without physical residency in Estonia. This meant the Estonian country suddenly had value as a service in addition to a place to live.

What does “Country as a Service” mean?

With the rise of a global internet, we’ve seen more skilled workers and businesspeople offering their services across nations, regardless of their physical location. A survey by Intuit estimates that this number will reach 40 percent in the US alone by 2020.

These entrepreneurs and skilled artisans are ultimately looking for the simplest way to create and maintain a legal, global identity as an outlet for their global offerings.

They look to other countries, not because they are looking for a tax haven, but because they have been prevented from incorporating and maintaining a business, due to barriers from their own government.

The most important thing for these entrepreneurs is that the creation and upkeep of the company is easy and hassle-free. It is also important that, despite being incorporated in a different nation, they remain honest taxpayers within their country of physical residence.

This is exactly what Estonia offers—a location-independent, hassle-free and fully-digital economic and financial environment where entrepreneurs can run their own company globally….

When an e-Resident establishes a company, it means that the company will likely start using the services offered by other Estonian companies (like creating a bank account, partnering with a payment service provider, seeking assistance from accountants, auditors and lawyers). As more clients are created for Estonian companies, their growth potential increases, along with the growth potential of the Estonian economy.

Eventually, there will be more residents outside borders than inside them

If states fail to redesign and simplify the machinery of bureaucracy and make it location-independent, there will be an opportunity for countries that can offer such services across borders.

Estonia has learned that it’s incredibly important in a small state to serve primarily small and micro businesses. In order to sustain a nation on this, we must automate and digitize processes to scale. Estonia’s model, for instance, is location-independent, making it simple to scale successfully. We hope to acquire at least 10 million digital residents (e-Residents) in a way that is mutually beneficial by the nation-states where these people are tax residents….(More)”

Code and the City


Book edited by Rob Kitchin, Sung-Yueh Perng: “Software has become essential to the functioning of cities. It is deeply embedded into the systems and infrastructure of the built environment and is entrenched in the management and governance of urban societies. Software-enabled technologies and services enhance the ways in which we understand and plan cities. It even has an effect on how we manage urban services and utilities.

Code and the City explores the extent and depth of the ways in which software mediates how people work, consume, communication, travel and play. The reach of these systems is set to become even more pervasive through efforts to create smart cities: cities that employ ICTs to underpin and drive their economy and governance. Yet, despite the roll-out of software-enabled systems across all aspects of city life, the relationship between code and the city has barely been explored from a critical social science perspective. This collection of essays seeks to fill that gap, and offers an interdisciplinary examination of the relationship between software and contemporary urbanism.

This book will be of interest to those researching or studying smart cities and urban infrastructure….(More)”.

The Perils of Experimentation


Paper by Michael A. Livermore: “More than eighty years after Justice Brandeis coined the phrase “laboratories of democracy,” the concept of policy experimentation retains its currency as a leading justification for decentralized governance. This Article examines the downsides of experimentation, and in particular the potential for decentralization to lead to the production of information that exacerbates public choice failures. Standard accounts of experimentation and policy learning focus on information concerning the social welfare effects of alternative policies. But learning can also occur along a political dimension as information about ideological preferences, campaign techniques, and electoral incentives is revealed. Both types of information can be put to use in the policy arena by a host of individual and institutional actors that have a wide range of motives, from public-spirited concern for the general welfare to a desire to maximize personal financial returns. In this complex environment, there is no guarantee that the information that is generated by experimentation will lead to social benefits. This Article applies this insight to prior models of federalism developed in the legal and political science literature to show that decentralization can lead to the over-production of socially harmful information. As a consequence, policy makers undertaking a decentralization calculation should seek a level of decentralization that best balances the costs and benefits of information production. To illustrate the legal and policy implications of the arguments developed here, this Article examines two contemporary environmental rulemakings of substantial political, legal, and economic significance: a rule to define the jurisdictional reach of the Clean Water Act; and a rule to limit greenhouse gas emissions from the electricity generating sector….(More)”.

 

The Values of Public Library in Promoting an Open Government Environment


Djoko Sigit Sayogo et al in the Proceedings of the 17th International Digital Government Research Conference on Digital Government Research: “Public participation has been less than ideal in many government-implemented ICT initiatives. Extant studies highlight the importance of public libraries as an intermediary between citizens and government. This study evaluates the role of public libraries as mediating the relationship between citizens and government in support of an open government environment. Using data from a national survey of “Library and Technology Use” conducted by PEW Internet in 2015, we test whether a citizen’s perception of public values provided by public libraries influence the likelihood of the citizen’s engagement within open-government environment contexts. The results signify a significant relationship between certain public values provided by public libraries with the propensity of citizens engaging government in an online environment. Our findings further indicate that varying public values generate different results in regard to the way citizens are stimulated to use public libraries to engage with government online. These findings imply that programs designed and developed to take into account a variety of values are more likely to effectively induce citizen engagement in an open government environment through the mediation of public libraries….(More)”

Private Data and the Public Good


Gideon Mann‘s remarks on the occasion of the Robert Khan distinguished lecture at The City College of New York on 5/22/16: and opportunities about a specific aspect of this relationship, the broader need for computer science to engage with the real world. Right now, a key aspect of this relationship is being built around the risks and opportunities of the emerging role of data.

Ultimately, I believe that these relationships, between computer science andthe real world, between data science and real problems, hold the promise tovastly increase our public welfare. And today, we, the people in this room,have a unique opportunity to debate and define a more moral dataeconomy….

The hybrid research model proposes something different. The hybrid research model, embeds, as it were, researchers as practitioners.The thought was always that you would be going about your regular run of business,would face a need to innovate to solve a crucial problem, and would do something novel. At that point, you might choose to work some extra time and publish a paper explaining your innovation. In practice, this model rarely works as expected. Tight deadlines mean the innovation that people do in their normal progress of business is incremental..

This model separated research from scientific publication, and shortens thetime-window of research, to what can be realized in a few year time zone.For me, this always felt like a tremendous loss, with respect to the older so-called “ivory tower” research model. It didn’t seem at all clear how this kindof model would produce the sea change of thought engendered byShannon’s work, nor did it seem that Claude Shannon would ever want towork there. This kind of environment would never support the freestanding wonder, like the robot mouse that Shannon worked on. Moreover, I always believed that crucial to research is publication and participation in the scientific community. Without this engagement, it feels like something different — innovation perhaps.

It is clear that the monopolistic environment that enabled AT&T to support this ivory tower research doesn’t exist anymore. .

Now, the hybrid research model was one model of research at Google, butthere is another model as well, the moonshot model as exemplified byGoogle X. Google X brought together focused research teams to driveresearch and development around a particular project — Google Glass and the Self-driving car being two notable examples. Here the focus isn’t research, but building a new product, with research as potentially a crucial blocking issue. Since the goal of Google X is directly to develop a new product, by definition they don’t publish papers along the way, but they’re not as tied to short-term deliverables as the rest of Google is. However, they are again decidedly un-Bell-Labs like — a secretive, tightly focused, non-publishing group. DeepMind is a similarly constituted initiative — working, for example, on a best-in-the-world Go playing algorithm, with publications happening sparingly.

Unfortunately, both of these approaches, the hybrid research model and the moonshot model stack the deck towards a particular kind of research — research that leads to relatively short term products that generate corporate revenue. While this kind of research is good for society, it isn’t the only kind of research that we need. We urgently need research that is longterm, and that is undergone even without a clear financial local impact. Insome sense this is a “tragedy of the commons”, where a shared public good (the commons) is not supported because everyone can benefit from itwithout giving back. Academic research is thus a non-rival, non-excludible good, and thus reasonably will be underfunded. In certain cases, this takes on an ethical dimension — particularly in health care, where the choice ofwhat diseases to study and address has a tremendous potential to affect human life. Should we research heart disease or malaria? This decisionmakes a huge impact on global human health, but is vastly informed by the potential profit from each of these various medicines….

Private Data means research is out of reach

The larger point that I want to make, is that in the absence of places where long-term research can be done in industry, academia has a tremendous potential opportunity. Unfortunately, it is actually quite difficult to do the work that needs to be done in academia, since many of the resources needed to push the state of the art are only found in industry: in particular data.

Of course, academia also lacks machine resources, but this is a simpler problem to fix — it’s a matter of money, resources form the government could go to enabling research groups building their own data centers or acquiring the computational resources from the market, e.g. Amazon. This is aided by the compute philanthropy that Google and Microsoft practice that grant compute cycles to academic organizations.

But the data problem is much harder to address. The data being collected and generated at private companies could enable amazing discoveries and research, but is impossible for academics to access. The lack of access to private data from companies actually is much more significant effects than inhibiting research. In particular, the consumer level data, collected by social networks and internet companies could do much more than ad targeting.

Just for public health — suicide prevention, addiction counseling, mental health monitoring — there is enormous potential in the use of our online behavior to aid the most needy, and academia and non-profits are set-up to enable this work, while companies are not.

To give a one examples, anorexia and eating disorders are vicious killers. 20 million women and 10 million men suffer from a clinically significant eating disorder at some time in their life, and sufferers of eating disorders have the highest mortality rate of any other mental health disorder — with a jaw-dropping estimated mortality rate of 10%, both directly from injuries sustained by the disorder and by suicide resulting from the disorder.

Eating disorders are particular in that sufferers often seek out confirmatory information, blogs, images and pictures that glorify and validate what sufferers see as “lifestyle” choices. Browsing behavior that seeks out images and guidance on how to starve yourself is a key indicator that someone is suffering. Tumblr, pinterest, instagram are places that people host and seek out this information. Tumblr has tried to help address this severe mental health issue by banning blogs that advocate for self-harm and by adding PSA announcements to query term searches for queries for or related to anorexia. But clearly — this is not the be all and end all of work that could be done to detect and assist people at risk of dying from eating disorders. Moreover, this data could also help understand the nature of those disorders themselves…..

There is probably a role for a data ombudsman within private organizations — someone to protect the interests of the public’s data inside of an organization. Like a ‘public editor’ in a newspaper according to how you’ve set it up. There to protect and articulate the interests of the public, which means probably both sides — making sure a company’s data is used for public good where appropriate, and making sure the ‘right’ to privacy of the public is appropriately safeguarded (and probably making sure the public is informed when their data is compromised).

Next, we need a platform to make collaboration around social good between companies and between companies and academics. This platform would enable trusted users to have access to a wide variety of data, and speed process of research.

Finally, I wonder if there is a way that government could support research sabbaticals inside of companies. Clearly, the opportunities for this research far outstrip what is currently being done…(more)”

Do Open Comment Processes Increase Regulatory Compliance? Evidence from a Public Goods Experiment


Stephen N. Morgan, Nicole M. Mason and Robert S. Shupp at EconPapers: “Agri-environmental programs often incorporate stakeholder participation elements in an effort to increase community ownership of policies designed to protect environmental resources (Hajer 1995; Fischer 2000). Participation – acting through increased levels of ownership – is then expected to increase individual rates of compliance with regulatory policies. Utilizing a novel lab experiment, this research leverages a public goods contribution game to test the effects of a specific type of stakeholder participation scheme on individual compliance outcomes. We find significant evidence that the implemented type of non-voting participation mechanism reduces the probability that an individual will engage in noncompliant behavior and reduces the level of noncompliance. At the same time, exposure to the open comment treatment also increases individual contributions to a public good. Additionally, we find evidence that exposure to participation schemes results in a faster decay in individual compliance over time suggesting that the impacts of this type of participation mechanism may be transitory….(More)”

How innovation agencies work


Kirsten Bound and Alex Glennie at NESTA: “This report considers how governments can get better at designing and running innovation agencies, drawing on examples from around the world.

Key findings

  • There is no single model for a ‘successful’ innovation agency.  Although there is much to learn from other countries about best practice in institution and programme design, attempts to directly replicate organisational models that operate in very different contexts are likely to fail.
  • There are a variety of roles that innovation agencies can play. From our case studies, we have identified a number of different approaches that an innovation agency might take, depending on the specific nature of a country’s innovation system, the priorities of policymakers, and available resources.
  • Innovation agencies need a clear mission, but an ability to adapt and experiment. Working towards many different objectives at once or constantly changing strategic direction can make it difficult for an innovation agency to deliver impactful innovation support for businesses. However, a long-term vision of what success looks like should not prevent innovation agencies from experimenting with new approaches, and responding to new needs and opportunities.
  • Innovation agencies should be assessed both quantitatively and qualitatively. Evaluations tend to focus on the financial return they generate, but our research suggests that more effort needs to be put into assessing some of the more qualitative aspects of their role, including the quality of their management, their ability to take (and learn from) strategic risks, and the skill with which they design and implement their programmes.
  • Governments should be both ambitious and realistic about what they expect an innovation agency to achieve. An innovation agency’s role will inevitably be affected by shifts in government priorities. Understanding how innovation agencies shape (and are shaped by) the broader political environment around innovation is a necessary part of ensuring that they are able to deliver on their potential.

Governments around the world are looking for ways to nurture innovative businesses, as a way of solving some of their most urgent economic and societal challenges. Many seek to do this by setting up national innovation agencies: institutions that provide financial and other support to catalyse or drive private sector innovation. Yet we still know relatively little about the range of approaches that these agencies take, what programmes and instruments are likely to work best in a given context, and how to assess their long-term impact.

We have been investigating these questions by studying a diverse group selection of innovation agencies in ten different countries. Our aim has been to improve understanding of the range of existing institutional models and to learn more about their design, evolution and effectiveness. In doing so, we have developed a broad framework to help policymakers think about the set of choices and options they face in the design and management of an innovation agency….(More)”

Open data + increased disclosure = better public-private partnerships


David Bloomgarden and Georg Neumann at Fomin Blog: “The benefits of open and participatory public procurement are increasingly being recognized by international bodies such as the Group of 20 major economies, the Organisation for Economic Co-operation and Development, and multilateral development banks. Value for money, more competition, and better goods and services for citizens all result from increased disclosure of contract data. Greater openness is also an effective tool to fight fraud and corruption.

However, because public-private partnerships (PPPs) are planned during a long timeframe and involve a large number of groups, therefore, implementing greater levels of openness in disclosure is complicated. This complexity can be a challenge to good design. Finding a structured and transparent approach to managing PPP contract data is fundamental for a project to be accepted and used by its local community….

In open contracting, all data is disclosed during the public procurement process—from the planning stage, to the bidding and awarding of the contract, to the monitoring of the implementation. A global open source data standard is used to publish that data, which is already being implemented in countries as diverse as Canada, Paraguay, and the Ukraine. Using open data throughout the contracting process provides opportunities to innovate in managing bids, fixing problems, and integrating feedback as needed. Open contracting contributes to the overall social and environmental sustainability of infrastructure investments.

In the case of Mexico’s airport, the project publishes details of awarded contracts, including visualizing the flow of funds and detailing the full amounts of awarded contracts and renewable agreements. Standardized, timely, and open data that follow global standards such as the Open Contracting Data Standard will make this information useful for analysis of value for money, cost-benefit, sustainability, and monitoring performance. Crucially, open contracting will shift the focus from the inputs into a PPP, to the outputs: the goods and services being delivered.

Benefits of open data for PPPs

We think that better and open data will lead to better PPPs. Here’s how:

1. Using user feedback to fix problems

The Brazilian state of Minas Gerais has been a leader in transparent PPP contracts with full proactive disclosure of the contract terms, as well as of other relevant project information—a practice that puts a government under more scrutiny but makes for better projects in the long run.

According to Marcos Siqueira, former head of the PPP Unit in Minas Gerais, “An adequate transparency policy can provide enough information to users so they can become contract watchdogs themselves.”

For example, a public-private contract was signed in 2014 to build a $300 million waste treatment plant for 2.5 million people in the metropolitan area of Belo Horizonte, the capital of Minas Gerais. As the team members conducted appraisals, they disclosed them on the Internet. In addition, the team held around 20 public meetings and identified all the stakeholders in the project. One notable result of the sharing and discussion of this information was the relocation of the facility to a less-populated area. When the project went to the bidding phase, it was much closer to the expectations of its various stakeholders.

2. Making better decisions on contracts and performance

Chile has been a leader in developing PPPs (which it refers to as concessions) for several decades, in a range of sectors: urban and inter-urban roads, seaports, airports, hospitals, and prisons. The country tops the list for the best enabling environment for PPPs in Latin America and the Caribbean, as measured by Infrascope, an index produced by the Economist Intelligence Unit and the Multilateral Investment Fund of the IDB Group.

Chile’s distinction is that it discloses information on performance of PPPs that are underway. The government’s Concessions Unit regularly publishes summaries of the projects during their different phases, including construction and operation. The reports are non-technical, yet include all the necessary information to understand the scope of the project…(More)”

Smart crowds in smart cities: real life, city scale deployments of a smartphone based participatory crowd management platform


Tobias FrankePaul Lukowicz and Ulf Blanke at the Journal of Internet Services and Applications: “Pedestrian crowds are an integral part of cities. Planning for crowds, monitoring crowds and managing crowds, are fundamental tasks in city management. As a consequence, crowd management is a sprawling R&D area (see related work) that includes theoretical models, simulation tools, as well as various support systems. There has also been significant interest in using computer vision techniques to monitor crowds. However, overall, the topic of crowd management has been given only little attention within the smart city domain. In this paper we report on a platform for smart, city-wide crowd management based on a participatory mobile phone sensing platform. Originally, the apps based on this platform have been conceived as a technology validation tool for crowd based sensing within a basic research project. However, the initial deployments at the Notte Bianca Festival1 in Malta and at the Lord Mayor’s Show in London2 generated so much interest within the civil protection community that it has gradually evolved into a full-blown participatory crowd management system and is now in the process of being commercialized through a startup company. Until today it has been deployed at 14 events in three European countries (UK, Netherlands, Switzerland) and used by well over 100,000 people….

Obtaining knowledge about the current size and density of a crowd is one of the central aspects of crowd monitoring . For the last decades, automatic crowd monitoring in urban areas has mainly been performed by means of image processing . One use case for such video-based applications can be found in, where a CCTV camera-based system is presented that automatically alerts the staff of subway stations when the waiting platform is congested. However, one of the downsides of video-based crowd monitoring is the fact that video cameras tend to be considered as privacy invading. Therefore,  presents a privacy preserving approach to video-based crowd monitoring where crowd sizes are estimated without people models or object tracking.

With respect to the mitigation of catastrophes induced by panicking crowds (e.g. during an evacuation), city planners and architects increasingly rely on tools simulating crowd behaviors in order to optimize infrastructures. Murakami et al. presents an agent based simulation for evacuation scenarios. Shendarkar et al. presents a work that is also based on BSI (believe, desire, intent) agents – those agents however are trained in a virtual reality environment thereby giving greater flexibility to the modeling. Kluepfel et al. on the other hand uses a cellular automaton model for the simulation of crowd movement and egress behavior.

With smartphones becoming everyday items, the concept of crowd sourcing information from users of mobile application has significantly gained traction. Roitman et al. presents a smart city system where the crowd can send eye witness reports thereby creating deeper insights for city officials. Szabo et al. takes this approach one step further and employs the sensors built into smartphones for gathering data for city services such as live transit information. Ghose et al. utilizes the same principle for gathering information on road conditions. Pan et al. uses a combination of crowd sourcing and social media analysis for identifying traffic anomalies….(More)”.

Twelve principles for open innovation 2.0


Martin Curley in Nature: “A new mode of innovation is emerging that blurs the lines between universities, industry, governments and communities. It exploits disruptive technologies — such as cloud computing, the Internet of Things and big data — to solve societal challenges sustainably and profitably, and more quickly and ably than before. It is called open innovation 2.0 (ref. 1).

Such innovations are being tested in ‘living labs’ in hundreds of cities. In Dublin, for example, the city council has partnered with my company, the technology firm Intel (of which I am a vice-president), to install a pilot network of sensors to improve flood management by measuring local rain fall and river levels, and detecting blocked drains. Eindhoven in the Netherlands is working with electronics firm Philips and others to develop intelligent street lighting. Communications-technology firm Ericsson, the KTH Royal Institute of Technology, IBM and others are collaborating to test self-driving buses in Kista, Sweden.

Yet many institutions and companies remain unaware of this radical shift. They often confuse invention and innovation. Invention is the creation of a technology or method. Innovation concerns the use of that technology or method to create value. The agile approaches needed for open innovation 2.0 conflict with the ‘command and control’ organizations of the industrial age (see ‘How innovation modes have evolved’). Institutional or societal cultures can inhibit user and citizen involvement. Intellectual-property (IP) models may inhibit collaboration. Government funders can stifle the emergence of ideas by requiring that detailed descriptions of proposed work are specified before research can begin. Measures of success, such as citations, discount innovation and impact. Policymaking lags behind the market place….

Keys to collaborative innovation

  1. Purpose. Efforts and intellects aligned through commitment rather than compliance deliver an impact greater than the sum of their parts. A great example is former US President John F. Kennedy’s vision of putting a man on the Moon. Articulating a shared value that can be created is important. A win–win scenario is more sustainable than a win–lose outcome.
  2. Partner. The ‘quadruple helix’ of government, industry, academia and citizens joining forces aligns goals, amplifies resources, attenuates risk and accelerates progress. A collaboration between Intel, University College London, Imperial College London and Innovate UK’s Future Cities Catapult is working in the Intel Collaborative Research Institute to improve people’s well-being in cities, for example to enable reduction of air pollution.
  3. Platform. An environment for collaboration is a basic requirement. Platforms should be integrated and modular, allowing a plug-and-play approach. They must be open to ensure low barriers to use, catalysing the evolution of a community. Challenges in security, standards, trust and privacy need to be addressed. For example, the Open Connectivity Foundation is securing interoperability for the Internet of Things.
  4. Possibilities. Returns may not come from a product but from the business model that enabled it, a better process or a new user experience. Strategic tools are available, such as industrial designer Larry Keeley’s breakdown of innovations into ten types in four categories: finance, process, offerings and delivery.
  5. Plan. Adoption and scale should be the focus of innovation efforts, not product creation. Around 20% of value is created when an innovation is established; more than 80% comes when it is widely adopted7. Focus on the ‘four Us’: utility (value to the user); usability; user experience; and ubiquity (designing in network effects).
  6. Pyramid. Enable users to drive innovation. They inspired two-thirds of innovations in semiconductors and printed circuit boards, for example. Lego Ideas encourages children and others to submit product proposals — submitters must get 10,000 supporters for their idea to be reviewed. Successful inventors get 1% of royalties.
  7. Problem. Most innovations come from a stated need. Ethnographic research with users, customers or the environment can identify problems and support brainstorming of solutions. Create a road map to ensure the shortest path to a solution.
  8. Prototype. Solutions need to be tested and improved through rapid experimentation with users and citizens. Prototyping shows how applicable a solution is, reduces the risks of failures and can reveal pain points. ‘Hackathons’, where developers come together to rapidly try things, are increasingly common.
  9. Pilot. Projects need to be implemented in the real world on small scales first. The Intel Collaborative Research Institute runs research projects in London’s parks, neighbourhoods and schools. Barcelona’s Laboratori — which involves the quadruple helix — is pioneering open ‘living lab’ methods in the city to boost culture, knowledge, creativity and innovation.
  10. Product. Prototypes need to be converted into viable commercial products or services through scaling up and new infrastructure globally. Cloud computing allows even small start-ups to scale with volume, velocity and resilience.
  11. Product service systems. Organizations need to move from just delivering products to also delivering related services that improve sustainability as well as profitability. Rolls-Royce sells ‘power by the hour’ — hours of flight time rather than jet engines — enabled by advanced telemetry. The ultimate goal of open innovation 2.0 is a circular or performance economy, focused on services and reuse rather than consumption and waste.
  12. Process. Innovation is a team sport. Organizations, ecosystems and communities should measure, manage and improve their innovation processes to deliver results that are predictable, probable and profitable. Agile methods supported by automation shorten the time from idea to implementation….(More)”