Drones to deliver medicines to 12m people in Ghana


Neil Munshi in the Financial Times: “The world’s largest drone delivery network, ferrying 150 different medicines and vaccines, as well as blood, to 2,000 clinics in remote parts of Ghana, is set to be announced on Wednesday.

The network represents a big expansion for the Silicon Valley start-up Zipline, which began delivering blood in Rwanda in 2016 using pilotless, preprogrammed aircraft. The move, along with a new agreement in Rwanda signed in December, takes the company beyond simple blood distribution to more complicated vaccine and plasma deliveries.

“What this is going to show is that you can reach every GPS co-ordinate, you can serve everybody,” said Keller Rinaudo, Zipline chief executive. “Every human in that region or country [can be] within a 15-25 minute delivery of any essential medical product — it’s a different way of thinking about universal coverage.”

Zipline will deliver vaccines for yellow fever, polio, diptheria and tetanus which are provided by the World Health Organisation’s Expanded Project on Immunisation. The WHO will also use the company’s system for future mass immunisation programmes in Ghana.

Later this year, Zipline has plans to start operations in the US, in North Carolina, and in south-east Asia. The company said it will be able to serve 100m people within a year, up from the 22m that its projects in Ghana and Rwanda will cover.

In Ghana, Zipline said health workers will receive deliveries via a parachute drop within about 30 minutes of placing their orders by text message….(More)”.

Whose Commons? Data Protection as a Legal Limit of Open Science


Mark Phillips and Bartha M. Knoppers in the Journal of Law, Medicine and Ethics: “Open science has recently gained traction as establishment institutions have come on-side and thrown their weight behind the movement and initiatives aimed at creation of information commons. At the same time, the movement’s traditional insistence on unrestricted dissemination and reuse of all information of scientific value has been challenged by the movement to strengthen protection of personal data. This article assesses tensions between open science and data protection, with a focus on the GDPR.

Powerful institutions across the globe have recently joined the ranks of those making substantive commitments to “open science.” For example, the European Commission and the NIH National Cancer Institute are supporting large-scale collaborations, such as the Cancer Genome Collaboratory, the European Open Science Cloud, and the Genomic Data Commons, with the aim of making giant stores of genomic and other data readily available for analysis by researchers. In the field of neuroscience, the Montreal Neurological Institute is midway through a novel five-year project through which it plans to adopt open science across the full spectrum of its research. The commitment is “to make publicly available all positive and negative data by the date of first publication, to open its biobank to registered researchers and, perhaps most significantly, to withdraw its support of patenting on any direct research outputs.” The resources and influence of these institutions seem to be tipping the scales, transforming open science from a longstanding aspirational ideal into an existing reality.

Although open science lacks any standard, accepted definition, one widely-cited model proposed by the Austria-based advocacy effort openscienceASAP describes it by reference to six principles: open methodology, open source, open data, open access, open peer review, and open educational resources. The overarching principle is “the idea that scientific knowledge of all kinds should be openly shared as early as is practical in the discovery process.” This article adopts this principle as a working definition of open science, with a particular emphasis on open sharing of human data.

As noted above, many of the institutions committed to open science use the word “commons” to describe their initiatives, and the two concepts are closely related. “Medical information commons” refers to “a networked environment in which diverse sources of health, medical, and genomic information on large populations become widely shared resources.” Commentators explicitly link the success of information commons and progress in the research and clinical realms to open science-based design principles such as data access and transparent analysis (i.e., sharing of information about methods and other metadata together with medical or health data).

But what legal, as well as ethical and social, factors will ultimately shape the contours of open science? Should all restrictions be fought, or should some be allowed to persist, and if so, in what form? Given that a commons is not a free-for-all, in that its governing rules shape its outcomes, how might we tailor law and policy to channel open science to fulfill its highest aspirations, such as universalizing practical access to scientific knowledge and its benefits, and avoid potential pitfalls? This article primarily concerns research data, although passing reference is also made to the approach to the terms under which academic publications are available, which are subject to similar debates….(More)”.

Characterizing the Biomedical Data-Sharing Landscape


Paper by Angela G. Villanueva et al: “Advances in technologies and biomedical informatics have expanded capacity to generate and share biomedical data. With a lens on genomic data, we present a typology characterizing the data-sharing landscape in biomedical research to advance understanding of the key stakeholders and existing data-sharing practices. The typology highlights the diversity of data-sharing efforts and facilitators and reveals how novel data-sharing efforts are challenging existing norms regarding the role of individuals whom the data describe.

Technologies such as next-generation sequencing have dramatically expanded capacity to generate genomic data at a reasonable cost, while advances in biomedical informatics have created new tools for linking and analyzing diverse data types from multiple sources. Further, many research-funding agencies now mandate that grantees share data. The National Institutes of Health’s (NIH) Genomic Data Sharing (GDS) Policy, for example, requires NIH-funded research projects generating large-scale human genomic data to share those data via an NIH-designated data repository such as the Database of Geno-types and Phenotypes (dbGaP). Another example is the Parent Project Muscular Dystrophy, a non-profit organization that requires applicants to propose a data-sharing plan and take into account an applicant’s history of data sharing.

The flow of data to and from different projects, institutions, and sectors is creating a medical information commons (MIC), a data-sharing ecosystem consisting of networked resources sharing diverse health-related data from multiple sources for research and clinical uses. This concept aligns with the 2018 NIH Strategic Plan for Data Science, which uses the term “data ecosystem” to describe “a distributed, adaptive, open system with properties of self-organization, scalability and sustainability” and proposes to “modernize the biomedical research data ecosystem” by funding projects such as the NIH Data Commons. Consistent with Elinor Ostrom’s discussion of nested institutional arrangements, an MIC is both singular and plural and may describe the ecosystem as a whole or individual components contributing to the ecosystem. Thus, resources like the NIH Data Commons with its associated institutional arrangements are MICs, and also form part of the larger MIC that encompasses all such resources and arrangements.

Although many research funders incentivize data sharing, in practice, progress in making biomedical data broadly available to maximize its utility is often hampered by a broad range of technical, legal, cultural, normative, and policy challenges that include achieving interoperability, changing the standards for academic promotion, and addressing data privacy and security concerns. Addressing these challenges requires multi-stakeholder involvement. To identify relevant stakeholders and advance understanding of the contributors to an MIC, we conducted a landscape analysis of existing data-sharing efforts and facilitators. Our work builds on typologies describing various aspects of data sharing that focused on biobanks, research consortia, or where data reside (e.g., degree of data centralization).7 While these works are informative, we aimed to capture the biomedical data-sharing ecosystem with a wider scope. Understanding the components of an MIC ecosystem and how they interact, and identifying emerging trends that test existing norms (such as norms respecting the role of individuals from whom the data describe), is essential to fostering effective practices, policies and governance structures, guiding resource allocation, and promoting the overall sustainability of the MIC….(More)”

Cyberdiplomacy: Managing Security and Governance Online


Book by Shaun Riordan: “The world has been sleep-walking into cyber chaos. The spread of misinformation via social media and the theft of data and intellectual property, along with regular cyberattacks, threaten the fabric of modern societies. All the while, the Internet of Things increases the vulnerability of computer systems, including those controlling critical infrastructure. What can be done to tackle these problems? Does diplomacy offer ways of managing security and containing conflict online?

In this provocative book, Shaun Riordan shows how traditional diplomatic skills and mindsets can be combined with new technologies to bring order and enhance international cooperation. He explains what cyberdiplomacy means for diplomats, foreign services and corporations and explores how it can be applied to issues such as internet governance, cybersecurity, cybercrime and information warfare. Cyberspace, he argues, is too important to leave to technicians. Using the vital tools offered by cyberdiplomacy, we can reduce the escalation and proliferation of cyberconflicts by proactively promoting negotiation and collaboration online….(More)”.

Crowdsourcing in medical research: concepts and applications


Paper by Joseph D. Tucker, Suzanne Day, Weiming Tang, and Barry Bayus: “Crowdsourcing shifts medical research from a closed environment to an open collaboration between the public and researchers. We define crowdsourcing as an approach to problem solving which involves an organization having a large group attempt to solve a problem or part of a problem, then sharing solutions. Crowdsourcing allows large groups of individuals to participate in medical research through innovation challenges, hackathons, and related activities. The purpose of this literature review is to examine the definition, concepts, and applications of crowdsourcing in medicine.

This multi-disciplinary review defines crowdsourcing for medicine, identifies conceptual antecedents (collective intelligence and open source models), and explores implications of the approach. Several critiques of crowdsourcing are also examined. Although several crowdsourcing definitions exist, there are two essential elements: (1) having a large group of individuals, including those with skills and those without skills, propose potential solutions; (2) sharing solutions through implementation or open access materials. The public can be a central force in contributing to formative, pre-clinical, and clinical research. A growing evidence base suggests that crowdsourcing in medicine can result in high-quality outcomes, broad community engagement, and more open science….(More)”

Digital Health Data And Information Sharing: A New Frontier For Health Care Competition?


Paper by Lucia Savage, Martin Gaynor and Julie Adler-Milstein: “There are obvious benefits to having patients’ health information flow across health providers. Providers will have more complete information about patients’ health and treatment histories, allowing them to make better treatment recommendations, and avoid unnecessary and duplicative testing or treatment. This should result in better and more efficient treatment, and better health outcomes. Moreover, the federal government has provided substantial incentives for the exchange of health information. Since 2009, the federal government has spent more than $40 billion to ensure that most physicians and hospitals use electronic health records, and to incentivize the use of electronic health information and health information exchange (the enabling statute is the Health Information Technology for Clinical Health Act), and in 2016 authorized substantial fines for failing to share appropriate information.

Yet, in spite of these incentives and the clear benefits to patients, the exchange of health information remains limited. There is evidence that this limited exchange in due in part to providers and platforms attempting to retain, rather than share, information (“information blocking”). In this article we examine legal and business reasons why health information may not be flowing. In particular, we discuss incentives providers and platforms can have for information blocking as a means to maintain or enhance their market position and thwart competition. Finally, we recommend steps to better understand whether the absence of information exchange, is due to information blocking that harms competition and consumers….(More)”

Predictive Big Data Analytics using the UK Biobank Data


Paper by Ivo D Dinov et al: “The UK Biobank is a rich national health resource that provides enormous opportunities for international researchers to examine, model, and analyze census-like multisource healthcare data. The archive presents several challenges related to aggregation and harmonization of complex data elements, feature heterogeneity and salience, and health analytics. Using 7,614 imaging, clinical, and phenotypic features of 9,914 subjects we performed deep computed phenotyping using unsupervised clustering and derived two distinct sub-cohorts. Using parametric and nonparametric tests, we determined the top 20 most salient features contributing to the cluster separation. Our approach generated decision rules to predict the presence and progression of depression or other mental illnesses by jointly representing and modeling the significant clinical and demographic variables along with the derived salient neuroimaging features. We reported consistency and reliability measures of the derived computed phenotypes and the top salient imaging biomarkers that contributed to the unsupervised clustering. This clinical decision support system identified and utilized holistically the most critical biomarkers for predicting mental health, e.g., depression. External validation of this technique on different populations may lead to reducing healthcare expenses and improving the processes of diagnosis, forecasting, and tracking of normal and pathological aging….(More)”.

Responsible Data Governance of Neuroscience Big Data


Paper by B. Tyr Fothergill et al: “Current discussions of the ethical aspects of big data are shaped by concerns regarding the social consequences of both the widespread adoption of machine learning and the ways in which biases in data can be replicated and perpetuated. We instead focus here on the ethical issues arising from the use of big data in international neuroscience collaborations.

Neuroscience innovation relies upon neuroinformatics, large-scale data collection and analysis enabled by novel and emergent technologies. Each step of this work involves aspects of ethics, ranging from concerns for adherence to informed consent or animal protection principles and issues of data re-use at the stage of data collection, to data protection and privacy during data processing and analysis, and issues of attribution and intellectual property at the data-sharing and publication stages.

Significant dilemmas and challenges with far-reaching implications are also inherent, including reconciling the ethical imperative for openness and validation with data protection compliance, and considering future innovation trajectories or the potential for misuse of research results. Furthermore, these issues are subject to local interpretations within different ethical cultures applying diverse legal systems emphasising different aspects. Neuroscience big data require a concerted approach to research across boundaries, wherein ethical aspects are integrated within a transparent, dialogical data governance process. We address this by developing the concept of ‘responsible data governance’, applying the principles of Responsible Research and Innovation (RRI) to the challenges presented by governance of neuroscience big data in the Human Brain Project (HBP)….(More)”.

Responsible data sharing in international health research: a systematic review of principles and norms


Paper by Shona Kalkman, Menno Mostert, Christoph Gerlinger, Johannes J. M. van Delden and Ghislaine J. M. W. van Thiel: ” Large-scale linkage of international clinical datasets could lead to unique insights into disease aetiology and facilitate treatment evaluation and drug development. Hereto, multi-stakeholder consortia are currently designing several disease-specific translational research platforms to enable international health data sharing. Despite the recent adoption of the EU General Data Protection Regulation (GDPR), the procedures for how to govern responsible data sharing in such projects are not at all spelled out yet. In search of a first, basic outline of an ethical governance framework, we set out to explore relevant ethical principles and norms…

We observed an abundance of principles and norms with considerable convergence at the aggregate level of four overarching themes: societal benefits and value; distribution of risks, benefits and burdens; respect for individuals and groups; and public trust and engagement. However, at the level of principles and norms we identified substantial variation in the phrasing and level of detail, the number and content of norms considered necessary to protect a principle, and the contextual approaches in which principles and norms are used....

While providing some helpful leads for further work on a coherent governance framework for data sharing, the current collection of principles and norms prompts important questions about how to streamline terminology regarding de-identification and how to harmonise the identified principles and norms into a coherent governance framework that promotes data sharing while securing public trust….(More)”

Advancing Computational Biology and Bioinformatics Research Through Open Innovation Competitions


HBR Working Paper by Andrea Blasco et al: “Open data science and algorithm development competitions offer a unique avenue for rapid discovery of better computational strategies. We highlight three examples in computational biology and bioinformatics research where the use of competitions has yielded significant performance gains over established algorithms. These include algorithms for antibody clustering, imputing gene expression data, and querying the Connectivity Map (CMap). Performance gains are evaluated quantitatively using realistic, albeit sanitized, data sets. The solutions produced through these competitions are then examined with respect to their utility and the prospects for implementation in the field. We present the decision process and competition design considerations that lead to these successful outcomes as a model for researchers who want to use competitions and non-domain crowds as collaborators to further their research….(More)”.